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J. ÄNGEBY, M. VIBERG AND T. GUSTAFSSON

Signal Processing Group, Department of Signals and Systems
Chalmers University of Technology, G¨oteborg, Sweden

ABSTRACT

A novel approach for signal parameter estimation, named
the Non-LinearInstantaneousLeast Squares (NILS) esti-
mator, is proposed and a high SNR statistical analysis of the
estimates is presented. The algorithm is generally applica-
ble to deterministic signal in noise models. However, it is of
particular interest in applications where the “conventional”
non-linear least squares criterion suffers from numerous lo-
cal minima. The key idea here is to apply a sliding win-
dow to estimate the instantaneous amplitude, which is then
used in a separable least squares criterion-function. Hereby
the radius of attraction of the global minimum is under the
control of the user, which makes the NILS approach advan-
tegous to use in practical applications. Numerical results
using polynomial-phase signals validate the theoretical re-
sults.

1. INTRODUCTION

Deterministic signal models are important and widely used
in applications, and the estimation of such signal param-
eters has been studied extensively. For the case of wide
sense stationary signals, there is a large number of estima-
tion approaches that can be used and there is a rich liter-
ature on the estimation of such signal parameters, see for
example [5]. However, if the signal is non-stationary, or
if it has been non-uniformly sampled, then there are not
many estimation techniques available. In theory, the Non-
Linear Least Squares (NLLS) approach to signal parame-
ter estimation can be used on such signals. However, for
many signal models the NLLS approach suffers from se-
vere numerical problems. Some methods have been devel-
oped that can estimate the parameters of certain classes of
non-stationary signals. For example, motivated by appli-
cations such as radar and mobile tele-communication, the
estimation of Polynomial-Phase Signals (PPS) parameters
has received considerable attention recently [3, 4, 6]. Here,
a novel approach to signal parameter estimation named the
Non-LinearInstantaneousLeast Squares (NILS) estimator
is presented. The key idea is to use a sliding window to es-
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timate the instantaneous amplitude, which is then used in a
separable least squares criterion-function.

2. MOTIVATION FOR THE NILS APPROACH

Consider the following deterministic signal model:

yk = b sk(�) + ek; k = 1; : : : ; N; (1)

where� denotes the signal parameters,ek the noise,b a
complex-valued amplitude andsk(�) is the deterministic
signal waveform. For simplicity, it is assumed that the noise
is independent and identically distributed with variance�2.
Modification of the analysis to the general case is straight-
forward. A well-known approach to estimate the signal pa-
rameters is to use a NLLS fit ofb sk(�) to yk with respect
to b and�:

fb̂; �̂g = argmin
b;�

NX
k=1

jyk � bsk(�)j
2
: (2)

Since the NLLS criterion is linear inb, it can be concen-
trated w.r.t.�. Expressing the estimate ofb as a function of
� leads to

b̂(�) =

PN

k=1 yks
�
k(�)PN

k=1 jsk(�)j
2
=

sHN (�)yN

jsN (�)j
2 ; (3)

whereyN = (y(1); : : : ; y(N))T , (�)� denotes complex con-
jugation,(�)H is complex conjugate transpose andsN (�) is
defined conformably withyN . Using (3) in (2) gives

�̂ = argmin
�

NX
k=1

�����yk �
sHN (�)yN

jsN (�)j
2 sk(�)

�����
2

: (4)

In the case of Gaussian noise, this approach is equivalent
to the Maximum Likelihood (ML) estimator, which is well
known to be statistically efficient. However, for many sig-
nal models of interest, NLLS suffers from severe numerical
problems which makes it difficult to find the global mini-
mum. Firstly, the Radius of Attraction (RoA) of the global
minimum, defined as the maximum distance from the mini-
mum that a gradient-based search can be originated and still
find it, may be very small (in the case of a sinusoidal signal,



the RoA is proportional to1=N [7]). Secondly, in nearly
ambiguous situations, a local minimum can yield almost
the same value of the noise-less criterion as does the global
minimum. In the presence of noise, the local minimum can
then erroneously become global. Due to the problems in-
herent in the NLLS approach, it is only on rare occasions
that it can be used.

3. THE NILS APPROACH

To overcome the mentioned shortcomings in the NLLS ap-
proach, a “smoothing” in the criterion is proposed. The
idea is to replace the NLLS estimate of the amplitudeb
with a time and signal-parameter dependent local LS es-
timate, based on observations from some sliding window.
In the following, this instantaneous amplitude estimate will
be denoted̂bk(�). For example, let̂bk(�) be a local am-
plitude estimate based on the datafyk+lgnl=0. Here,n is a
user-defined integer that determines the length of the sliding
window (the length isn + 1). For the sake of simplicity, a
rectangular window will be used in what follows, although
other windows (Hamming, Hanning, etc.) may be prefer-
able. The least squares estimate of the local amplitude is
then

b̂k(�) =
sH(k;�)y(k)

js(k;�)j2
; (5)

where

s(k;�)
def
= (sk(�); : : : ; sk+n(�))

T
; (6)

y(k)
def
= (yk; : : : ; yk+n)

T
: (7)

An additional smoothing in the NLLS criterion can be intro-
duced by regularizing the amplitude estimate. The main rea-
son for this is to avoid problems whenjsk(�)j ' 0. How-
ever, this option will not be used here, and the reader is
referred to [2] for details. Replacinĝb(�) in (4) with the
instantaneous time-varying amplitude estimateb̂k(�), gives
the NILS criterion1

VN (�) =

N�nX
k=1

�����yk �
sH(k;�)y(k)

js(k;�)j
2 sk(�)

�����
2

: (8)

The signal parameter estimates are the minimizing argu-
ments ofVN (�). The parameter estimates are found using
a non-linear search that can be implemented on- or off-line.
Consider the criterion (8). Due to the windowing, the pa-
rameter estimates are based onN � n fits of b̂k(�)sk(�) to
yk. Then last observations are only used implicitly through

1Note that the criterion-function is closely related to the structured AR
criterion introduced in [1], which establishes a link between NILS and pre-
diction based estimators.

b̂k(�). Criterion (8) can be modified to overcome this draw-
back as follows:

VN (�) =

N�nX
k=1

���y(k)� b̂k(�)s(k;�)
���
2

; (9)

whereb̂k(�) , s(k;�) andy(k) are defined in (5)-(7). The
modified criterion is the mean ofN � n consecutive NLLS
criterion-functions, based on the observations iny(k), k =
1; : : : ; N � n. Using (5) in (9) implies

VN (�) =
N�nX
k=1

����?(k;�)y(k)
���
2

; (10)

where

�
?(k;�)

def
= I��(k;�); (11)

�(k;�)
def
=

1

js(k;�)j
2 s(k;�)s

H(k;�): (12)

Note that�(k;�) projects onto the space spanned bys(k;�),
which is a one-dimensional instantaneous signal subspace.
Hereby a link is established between NILS and estimators
based on signal subspaces. Henceforth, the NILS criterion
(9) will be referred to as subspace-based, and the criterion
(8) will be referred to as prediction-based.
Generally, the subspace-based NILS approach is to be pre-
ferred over the prediction-based. The subspace-based cri-
terion function has empirically found to be “smoother” in
the sense that there are fewer local minima. Still, the global
minimum of the subspace-based criterion function is more
“pointed”, which gives it a slightly better statistical per-
formance, than the prediction-based approach. An appeal-
ing property is also that the subspace-based NILS estimator
is equivalent to NLLS if the window length is chosen to
n+ 1 = N . For the above reasons, the subspace-based cri-
terion (9) will be used henceforth. The following example
highlights the basic advantages of the NILS approach.

Example 1 Consider a complex valued sinusoid, with an-
gular frequency!0 = 1:5. In Figure 1, the mean value of
the criterion (10) is plotted for increasingn. The RoA of
the global minimum in the NILS criterion depends on the
window length. Asn increases, the RoA decreases and the
minimum becomes more pointed. Note that forn = 1, there
are no local minima.

Seen from a numerical/computational point of view, a small
NILS window length is preferred, since a gradient-based
search is then more likely to converge to the global min-
imum. However, it is intuitively obvious that the statisti-
cal performance of the NILS estimates is improved (i.e. the
MSE decreases) asn increases. These properties can be uti-
lized in a search strategy as follows: Initiate the search using
a short window to assure convergence to the global mini-
mum. Then, as the search converges, the window length
can be increased in order to improve the accuracy.
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Figure 1: Mean value of the criterion-function (10) as a
function ofn. Single cisoid,!0 = 1:5, SNR=10 dB.

We conclude this section by mentioning that the NILS ap-
proach can be easily extended to include general windows,
multi-component signal models, and also in fact to stochas-
tic signal models [2].

4. STATISTICAL ANALYSIS

Assessing the statistical performance of an estimator is in
general an exceedingly complex task. However, under sim-
plifying assumptions, it is possible to analytically derive re-
sults on the statistical distribution of the estimates. Here, a
first-order expression for the covariance matrix of the NILS
parameter estimates is presented, which is valid for high
enough SNR. Here, the SNR is defined asSNR = jbj2=�2,
which is a natural definition only if the model signalsk(�)
is of constant-modulus equal to one. For simplicity, we let
jbj be fixed and assume that� ! 0. The analysis is appli-
cable to any smooth and uniquely identifiable signal model.
The identifiability condition assumed to hold is

bsk(�) = �bsk(��); k = 1; : : : ; N , � = ��; b = �b: (13)

To begin with, the consistency of the estimates is estab-
lished. Under the stated assumptions, the criterion function
VN (�) (10) converges, uniformly in� , to the limiting func-
tion �VN (�) as� ! 0. Here,

�VN (�) = jb0j
2
N�nX
k=1

j�?(k;�)s(k;�0)j
2; (14)

whereb0 ands(k;�0) denote the true values. Clearly,
�VN (�) � 0, with equality if and only ifs(k;�0) = cks(k;�)
for all k, and for some set of scalarsck. However, in view
of (13) this is possible only for� = �0 and we have proven
the following:

Theorem 1 Let the signal parameters� be defined on a
compact set� , and assume that the true value�0 is an in-
ner point of� . Further, assume that the gradient ofsk(�)
with respect to� is bounded on� and that (13) holds. Then
we have

�̂ ! �0 as � ! 0: (15)

Next, the attention is turned to the variance of the estimates.
Since�̂ minimizesVN (�) , we haveV

0

N (�) = 0 at � = �̂,
whereV

0

N (�) denotes the gradient. For high SNR, a first-
order Taylor expansion yields

0 = V
0

N (�0) + V
00

N (�0)(�̂ � �0) + op(jV
0

N (�0)j) ; (16)

whereV
00

N (�0) denotes the Hessian andop(�) is order in
probability. Defining

H = lim
�!0

V
00

N (�0) (17)

it now follows

�̂ � �0 = �H�1V
0

N (�0) + op(jV
0

N (�0)j) ; (18)

providedH > 0. Further, let

Q = lim
�!0

1

�2
E[V

0

N(�0)V
0T
N (�0)] : (19)

For high SNR, the mean square error (MSE) matrix of the
estimation error is then given by

E[(�̂ � �0)(�̂ � �0)
T ] = �2 H�1QH�1 + o(�2) : (20)

Evaluation ofH andQ leads to the following:

Theorem 2 Let the conditions of Theorem 1 hold, and as-
sume in addition thatsk(�) has bounded derivatives up to
order three. Further, assume that the asymptotic Hessian
matrix H is positive definite. Then the MSE matrix of the
estimation error is given by (20), where

H = 2jb0j
2
N�nX
k=1

Re
n

GH(k)�?(k;�)G(k)
o

(21)

Q = 2jb0j
2
N�nX
k=1

minfN�n;k+ngX
l=maxf1;k�ng

Re fZ(k; l)g : (22)

Here,Z(k; l) = GH(k)�?(k;�)Jk�l�
?(l;�)G(l), G(k)

= ds(k;�)=d� denotes the Jacobian matrix, andJk is an
(n+ 1)� (n+ 1) matrix of zeros, except at thek:th super-
diagonal, which is all ones (e.g.Jn has a single one in the
upper right corner).

The proof consists of straightforward calculations, and the
details will be published elsewhere. As a corollary, an ex-
pression for the Cram´er-Rao lower bound assuming Gaus-
sian noise is obtained. This is due to the fact that forn =



N � 1, the NILS estimator coincides with the ML estimator
(NLLS), which is known to be statistically efficient at high
SNR and/or largeN . Forn = N � 1 we haveH = Q, and
the CRB inequality is expressed as

Cov(�̂) �
2

SNR

h
Re
n

GH
�
?(�)G

oi�1
; (23)

where, forn = N � 1, thek-argument ofG has been omit-
ted.

5. POLYNOMIAL PHASE SIGNAL EXAMPLE

The analytical expression for the high SNR covariance ma-
trix of the estimation error is rather involved. Thus, one
has to resort to numerical comparisons to get further insight
into the performance in realistic scenarios. Since NILS co-
incides with NLLS forn = N � 1, it is of particular inter-
est to investigate how close to the NLLS performance one
comes for smaller values ofn. Here, the results of applying
the NILS estimator to a 4:th order polynomial phase signal
(PPS) are presented. The signal model is thus

sk(�) = b ej�(�;k) + ek (24)

where the true parameter values areb0 = 1 and

�(�0; k) = 2�
4X

l=1

�lk
l; �l = 4=N l: (25)

The noiseek is a zero-mean white Gaussian random pro-
cess with variance equal to1=SNR. The number of sam-
ples isN = 200 and the SNR is varied from -9 dB to 30
dB. The NILS estimator is applied withn = 1 andn = 9
respectively. Figure 2 shows the theoretical and empirical
RMS errors for�̂4. The theoretical curves are based on
Theorem 2, whereas the empirical results are obtained from
100 independent Monte-Carlo runs for each displayed SNR-
value. The corresponding curves for the other signal param-
eters show the same characteristic behaviour, except that the
magnitude of the RMSE decreases drastically with increas-
ing coefficient number (i.e.�4 is more accurately estimated
than�3, etc). However, the relative efficiency, defined as
RMSE/CRLB, is approximately the same for all PPS pa-
rameters and lies in the range 1 (statistical efficiency) to 3-4,
depending on the length of the sliding window.
Based on the example presented here and other similar ex-
periments we can draw the following conclusions:

� The empirical RMS errors closely follow the theoret-
ical values down to an SNR threshold.

� The SNR threshold is essentially the same for all PPS
parameters, and it decreases with increasing window
length.

� The NILS estimates are close to statistical efficiency
already at small values ofn (N=n � 10). The ratio of
the estimation error variance to the CRB is approxi-
mately the same for all PPS parameters.
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Figure 2: Theoretical (dotted and dashed line) and empir-
ical (’�’ and ’�’) RMS errors for�̂4 versus the signal-to-
noise ratio. The NILS estimator is applied withn = 1 and
n = 9 respectively. The solid line is the Cramér-Rao lower
bound.

The second conclusion deserves to be stressed, since most
known suboptimal PPS estimators have a rather high SNR
threshold for polynomial-phase signals of high order [2].
The advantages compared to NLLS and to the previously
known suboptimal methods should make NILS a viable al-
ternative in practical applications.
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