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ABSTRACT

The mutual coupling in a uniform linear array (ULA)
of dipoles is calculated using basic electromagnetic con-
cepts. Since the coupling often is unknown and needs to
be estimated, a simpler model is proposed based on the
electromagnetic analysis. The parameterization of this
model is shown to be locally unambiguous. A necessary
condition for the joint solution of directions and cou-
pling parameters to be unique is also derived. Finally,
the directions and coupling parameters are estimated
using a maximum likelihood method. It is found that
the simpler coupling model with just a few parameters
well describes the full electromagnetic model.

1. INTRODUCTION

In the last two decades many high-resolution direction
of arrival (DOA) estimation algorithms have been pro-
posed with applications mainly in radar and sonar. Re-
cently, the idea of using antenna arrays also in commu-
nication systems to increase the diversity has emerged.
In practical antennas the elements of the array a�ect
each other through mutual coupling and this reduces
the direction �nding ability. This is especially a prob-
lem with mass produced antennas in a rapidly changing
environment such as base station antennas.

Much research has been performed on gain and phase
uncertainties in the array response. However, on mu-
tual coupling not much work has been presented. A
modi�ed MUSIC algorithm that includes a known cou-
pling is presented in [8] and [5]. In [3], an iterative MU-
SIC method is presented that estimates an unknown
coupling along with the DOAs, the gain and the phase.

Here, the mutual coupling in a uniform linear ar-
ray of dipoles is calculated using basic electromagnetic
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concepts. This model for the coupling is used to ex-
amine how the presence of a known coupling a�ects
the direction �nding. However, this model contains
too many unknown parameters when the coupling is
unknown and a simpler model is therefore presented.
The identi�ability of that model is then investigated.
Finally, the validity of the simpler model is examined
by estimating both DOAs and coupling parameters us-
ing data generated by the full electromagnetic model.

2. ARRAY MODEL AND COUPLING

The direction of an incident wave can be estimated
by measuring the received voltages at the di�erent el-
ements of the array and by assuming the wave to be
plane, simple geometric gives the direction. However,
due to mutual coupling, the measured voltage at each
element will depend not only on the incident �eld but
also on the voltages on the other elements. The re-
ceived voltage on each element will induce a current on
the element which in turn radiates a �eld which a�ects
the surrounding elements, i.e. mutual coupling. Here,
mutual coupling in an array of n dipoles of �nite length,
l, is considered. To simplify the analysis the dipoles are
considered thin, i.e. the radius a << l. The dipoles are
placed linearly side-by-side with the same element sep-
aration, d , resulting in a ULA. The received voltages
from this array, when p far-�eld narrow-band sources
are used, are derived using basic electromagnetic con-
cepts in [7]. The resulting model for the measured volt-
ages is

x(t) = CA(�)s(t) + e(t); (1)

where the vector of measured voltages x(t) is n � 1,
the coupling matrix C is n � n, the steering matrix
A(�) is n � p, the signal vector s(t) is p � 1 and the
noise vector e(t) is n� 1. The DOAs are contained in
the parameter vector �. The steering matrix of a ULA



has a Vandermonde structure with elements [A(�)]ij =

e�jkd(i�1) cos�j , where k is the wavenumber. The data
model in (1) is identical to the usual data model used
in array processing except for the coupling matrix

C = (ZA + ZT )(Z+ ZT I)
�1; (2)

where ZA is the antenna impedance, ZT is the impe-
dance of the measurement equipment at each element,
and Z is the mutual impedance matrix. Deriving ex-
pressions for the mutual- and the antenna impedance is
usually intractable but for thin and �nite dipoles they
can be calculated by using, for instance, the method of
induced electro-motive force [1]. The impedance of the
measurement equipment ZT is chosen as the complex
conjugate of the dipole impedance in order to reduce
the powerloss. Other choices of ZT is discussed in [6].

The model in (1) needs to be complemented with
some additional assumptions which are used in the fol-
lowing sections.

� the coupling matrix has full rank, i.e., rk(C) = n
which implies that rk(CA(�)) = rk (A(�)) = p

� e(t) is circularly Gaussian distributed
Efe(t)g = 0, Efe(t)eH(s)g = �2

I �ts and
Efe(t)eT (s)g = 0 8 t; s.

� s(t) is also circularly Gaussian distributed
Efs(t)g = 0, Efs(t)sH(s)g = S �ts and
Efs(t)sT (s)g = 0 8 t; s.

3. DOA ESTIMATION WITH KNOWN

COUPLING

The problem of estimating the DOA in the presence of
a known coupling is not very di�erent from the usual
DOA estimation problem. Most algorithms which has
appeared in the last decades are possible to modify to
be able to cope with mutual coupling. Basically it is
just to change the steering matrix A to an e�ective
steering matrix CA. However, if the algorithm uses
some special structure of the steering matrix it can not,
at least not directly, be used when mutual coupling is
present. In [5, 8] a modi�ed version of the popular
MUSIC algorithm has been proposed. This version will
be brie
y reviewed and also two other algorithms that
straightforwardly can be extended to include a known
coupling.

The fundamental idea of MUSIC is based on a sub-
space approach [4]. The eigenvectors of the covariance
matrix of the measured voltages are divided in to signal
eigenvectors, Es, which span the signal subspace and
noise eigenvectors, En, which span the noise subspace.
Using the properties of the covariance matrix it can be
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Figure 1: CRB and RMS error of Root-Music and ES-
PRIT for �1 using an array of 10 �=2 dipoles spaced
�=2 apart when two waves are incident from (80�; 85�)
and 1000 snapshots with SNR = 20dB.

shown that the steering vector is perpendicular to the
noise subspace. Mutual coupling is included by simply
inserting the e�ective steering vector aH(�)CH

En = 0.
The MUSIC algorithm is usually formulated as search-
ing for the p largest peaks of the spatial spectrum

PMU (�) =
1

aH(�)CH
ÊnÊ

H

n Ca(�)
; (3)

where Ên is obtained from the sample covariance ma-
trix. Another closely related method for estimating
DOAs is Root-Music, that straightforwardly can be
modi�ed to include coupling. This method di�ers from
the above in that it requires the antenna to be a ULA.
De�ne the steering vector [a(z)]i = zi�1. Then, �nd
the roots of the polynomial

f(z) = a
T (z�1)CH

ÊnÊ
H

n Ca(z): (4)

Pick the p roots closest to the unit circle, ẑi and calcu-
late the angle and solve for �i in 6 ẑi = 6 e�jkd cos�i .

A di�erent method that is easily adopted to mutual
coupling is ESPRIT [4], that can be used in arrays with
a translational invariance structure. ESPRIT exploits
this invariance and the fact that RfEsg = RfA(�)g.
With mutual coupling present, the relation simply be-
comes RfC�1

Esg = RfA(�)g. Here, the invariance
structure is obtained by using maximum overlapping
sub-arrays.

The estimation performance of the above methods
is examined by Monte-Carlo simulations using 500 tri-
als. In Figure 1, the RMS errors of the modi�ed MU-
SIC and ESPRIT methods are shown. The Cram�er-
Rao lower bound (CRB) is also shown for the case with
coupling and without. The MUSIC method is close to
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Figure 2: The magnitude of the elements of the cou-
pling matrix of an array of 10 �=2 dipoles spaced �=2
apart.

the CRB, but ESPRIT performs worse, since it only ex-
ploits the invariance structure and not the full matrix.
The performance is thus the same as in the coupling
free case. However, it is interesting to observe that the
CRB when a known coupling is present is slightly lower
than the coupling free case. This is not generally true,
but the di�erence is usually small [7].

4. PARAMETERIZATION AND

IDENTIFIABILITY

The methods in the previous section required that the
coupling matrix was known. Often this is not the case
and the coupling needs to be estimated along with the
DOAs. The model for the coupling matrix in (2) con-
tains n2 complex entries and a more e�cient parameteri-
zation of the coupling is therefore desired. In Figure 2,
the absolute value of the elements of the full electro-
magnetic C is shown. From this �gure it is clear that
the coupling between neighboring elements is almost
the same along the array, thus the number of parame-
ters to be estimated can be reduced by a factor of n. By
normalizing the main diagonal to unity, the following
coupling model results

Cij = cji�jj where c0 = 1: (5)

The magnitude of the coupling parameters decreases
quite fast, so that it is often enough with just a few (q)
nonzero ck (or sub-diagonals).

Before discussing methods of estimating the un-
known coupling along with the DOAs, the parameter
identi�ability of the problem needs to be examined.
When the signal s is known, for example a training
sequence, the problem of parameter identi�ability re-
duces to show that the parameterization is unambigu-

ous, i.e.

C(c)A(�) = C(c0)A(�0),
c = c

0

� = �0: (6)

This corresponds to showing that C(c)A(�) = y has a
unique solution, and since there exists at least one so-
lution the analytical implicit function theorem [2] can
be used to show that this is the only solution. First,
note that it is enough to consider one column of the
steering matrix since if (6) holds for one column it will
hold for all columns. Secondly, the array is a ULA and
thus the steering vector can be written as ai = �i�1,
where � = e�jkd cos�. Then C(c)A(�) = y represents
a system of equations in � and ci i = 1 : : : q. If the Ja-
cobian of this system of equations is non-zero, then the
analytical implicit function theorem ensures the exis-
tence of a unique function in the neighborhood of the
true parameter values and (6) holds locally. The Ja-
cobian can be regarded as a polynomial in �, and for
it to be zero the polynomial has to have zeros at the
unit circle. However, by examining this polynomial it
is found that the zeroth order coe�cient is c1 and the
highest order coe�cient is n� 1. For a polynomial to
have zeros on the unit circle the coe�cient vector must
be conjugate-symmetric and thus c1 = n � 1. Since
jc1j < 1 and n � 2, the polynomial can not have zeros
on the unit circle and thus (6) holds at least locally.

Usually the signals are not known, and in this case
a necessary condition for the existence of a unique so-
lution for � and c can be derived from the relation

Es = C(c)A(�)T; (7)

which is used in the so-called Subspace Fitting methods
[4], and contains all information about the DOAs and
the coupling parameters. The number of independent
real equations are 2np0, where p0 is the rank of signal
covariance S. The number of real unknowns in (7) are
2q + p from CA and 2pp0 from T. If

n � p+
p

2p0
+

q

p0
(8)

does not hold, there are more unknowns than equa-
tions. By the implicit function theorem [2], assuming
that the conditions for its existence hold, an in�nite
number of solutions exists. Thus, (8) is a necessary
condition for uniqueness.

5. JOINT ESTIMATION OF DOA AND

COUPLING

Most multidimensional search methods, stochastic max-
imum likelihood (SML) etc., can easily be modi�ed to
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Figure 3: The RMS error for � = 80� when jointly esti-
mating DOA and coupling using the array in Figure 2
when two waves are incident from (80�, 85�) and 1000
snapshots.

include coupling. However, when the coupling param-
eters are included, the initialization of the search be-
comes more important. A search can be avoided by
using an iterative version of the MUSIC algorithm that
estimates DOAs, mutual coupling, gain, and phase [3].
However, the convergence to the true parameter values
is very slow and the method also su�ers from the reso-
lution threshold of MUSIC for closely spaced DOAs.

Here, the SML method is used instead since it re-
quired much less computation time. The initializa-
tion, however, was obtained by using an iterative Root-
Music algorithm in the same fashion as the MUSIC
method in [3].

Now, it is interesting to estimate the coupling and
the DOAs with the simple model in (5) using data gen-
erated using the full electromagnetic model in (2). The
RMS error when jointly estimating DOA and coupling,
as two waves impinge on the array, is shown in Fig-
ure 3. Five iterations of the above mentioned Root-
Music method was used to obtain initialization values
for SML. Estimating a single coupling parameter more
than halves the RMS error, which mainly is due to
bias. When more parameters are estimated the level
of the bias depends on the DOAs and the number of
elements. As more and more coupling parameters are
included the variance increases and there is thus a com-
promise between bias and variance. In this case three
parameters is a reasonable choice. Also note that the
RSM error decreases with an increase in the SNR un-
til the bias dominates, which for example, is the case
when no coupling parameters are estimated. Thus, by
estimating a only few coupling parameters the RMS er-
ror can be made much smaller and the coupling matrix
in (2) with 100 entries is in this case well modeled by

only 3 parameters.

6. CONCLUSIONS

The mutual coupling was calculated for a ULA of dipoles
using basic electromagnetic concepts. Since the cou-
pling often is unknown and needs to be estimated, a
simpler model was proposed based on the electromag-
netic analysis. The parameterization of this model was
shown to be locally unambiguous. Also, a necessary
condition for the solution of the DOAs and the cou-
pling parameters to be unique was derived.

Finally, the validity of the simpler coupling model
was examined by jointly estimate both DOAs and cou-
pling using data generated by the full electromagnetic
model. It was found that the coupling, calculated us-
ing electromagnetics, was well described by the simpler
model with just a few parameters.
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