
AN EFFICIENT VLC DECOMPRESSION SCHEME FOR
USER-DEFINED CODING TABLES*

Bai-Jue Shie  and  Chen-Yi Lee

Department of Electronics Engineering, National Chiao Tung University,
1001, Ta Hsueh Road, Hsinchu, 300, Taiwan, R.O.C.

                                                          
* WORK SUPPORTED BY THE NATIONAL SCIENCE COUNCIL OF
   TAIWAN, ROC, UNDER GRANT NSC87-2215-E-009-035

ABSTRACT
With the increase of information and data types, high-throughput
and flexible memory-based VLC decoder is required for user-
defined coding tables to achieve higher compression ratio. In
this paper, we present a memory-based VLC decoder which is
quite suitable for the applications with user-defined tables. By
parallel loading data into memories, the coding tables can be
changed with much less time. The codeword-boundary
prediction algorithm breaks the recursive dependency of
decoding procedures. As a result, the VLC decoder can be
realized on multi-processor architecture and hence the decoding
throughput is enhanced significantly. Additionally, the INDEX-
OFFSET symbols that can recover all data with pure VLC
codeword and smaller table size are presented. Simulation
results show that the combination of the proposed VLC decoder
and user-defined table can achieve high decompression rate. As
a result, it is quite suitable for high data rate applications with
user-defined coding tables, such as MPEG-4.

1. INTRODUCTION

Variable-Length-Code (VLC), also called the Huffman code [1],
is the most popular data compression technique that has been
used in many standards, such as JPEG, MPEG, and H.263. Based
on the predetermined weight of each symbol, the idea is to assign
shorter codewords to the symbols having higher frequency and
the less probability symbols are assigned with longer codewords.
It exploits the information redundancy and the result of encoded
codeword bit stream is very close to source entropy. However,
different data types lead to different symbol probability
distributions. As a result, it needs individual VLC coding table
for each data type to achieve higher compression ratio.

With the advances of 3D graphics, multimedia and
communication technologies, both the amount of information
and the variability of data types increase significantly. As a result,
user-defined coding tables, which explore more data redundancy,
are necessary to reduce memory requirement and release
communication bandwidth. Being different with standard-defined
tables, the decoding information of user-defined table is
transmitted from communication channel or storage device
before the corresponding bit stream. To increase the transmission
efficiency of codewords, it has to reduce the table size and
decoding information for such applications. For physical design,
the VLC decoder is a small part of whole system. Because
memory modules occupy large area, it is not efficient that all

used coding tables are stored in VLC decoder. Consequently, the
decoding information is loaded when they are requested. If the
tables are changed for each part of bit stream, the time for
loading tables will reduce decoding throughput and system
performance. This may not be accepted for high data rate
applications. On the other hand, the procedure of data recovery
includes codeword decoding to symbol and symbol converting to
practical value. To achieve high decompression rate, not only
codeword bit stream has to be suitable for high throughput VLC
decoder, but also symbol representation needs to be modified to
simplify data recovery procedure.

A set of memory-based architectures has been discussed in [2],
[3], [4], [5], [6]. They store the table information in on-chip
memories. For this reason, user can change the coding table to
meet the requirements of various applications and obtain the
flexibility. To optimize system clock rate, some of these designs
use pipeline technique to divide the decoding procedure.
However, they did not break the recursive dependence of
codeword bit stream and the decoding throughput does not
increase very efficiently. To satisfy diverse applications
requirements, the motivation behind our research is to develop a
flexible and high-throughput VLC decoder with less loading time
for decoding information. Moreover, symbol representation that
can represent all data value with smaller table size and simply
data recovery procedure is our focus, too. The organization of
this paper is as follows. In section 2, the codeword-boundary
prediction algorithm is described. The architecture of VLC
decoder with dual-processor is presented in this section, too. In
section 3, the INDEX-OFFSET symbols and corresponding data
recovery method that can restore all data value with simple
method and smaller table size are shown. Finally, concluding
remarks are made in section 4.

2. VLC DECODER WITH DUAL-
PROCESSOR ARCHITECTURE

2.1 Codeword-Boundary Prediction

In decoding procedures, tree structure is formed by various types
of branches among parent-node and its child-nodes. The branch
type, stored in the parent-node, is the primary information for
searching the child-node. VLC decoder depends on the codeword
bit stream and the branch type information to go through one tree
level in each decoding procedure. As a result, it traverses a
unique path from the root to the leaf node that matches the
symbol of the codeword. If VLC decoder can learn about the



child-nodes condition, such as “Child-nodes are All Terminal
nodes” (CAT) or “there are Special terminal nodes” (S), during
the period of decoding their parent node, it is able to know how
many bits remain to be decoded after this parent node.
Consequently, the codeword-boundary and code-length can be
predicted.

Traditional branch types consist of one kind of regular node
and three kinds of “Special terminal node” [3]. Based on the
requirement mentioned above, the “CAT” and “S”
information is added into these branch types. Then, the 2-bit
tree branch models, which can perform the codeword-
boundary prediction, are established as shown in Fig 1. It
also presents the bit assignment for each branch model. In
addition, several symbols having very small probabilities will
be combined into a group to reduce the complexity of
encoding procedures. Therefore, we define 2 kinds of “Group
branch models” to predict group-codewords in a more
efficient way.

Figure 1: The branch model and bit assignment.

2.2 Memory-Mapping Scheme

Based on a memory-mapping scheme proposed in [9], the child-
nodes of the same parent node are merged into a “Loc” node and
each “Loc” node stores 4-set bit assignments of branch models to
represent the child-nodes conditions. Beside, two additional
memories, “T” and “C”, are introduced to calculate the “symbol
address” and “next Loc address” respectively. The i-th location
of the “T” memory stores the total number of terminal nodes
appearing from 0 to (i-1)-th “Loc” node. On the contrary, the i-th
value of “C” memory indicates the total number of nodes, which
has child-nodes extension from 0 to (i-1)-th “Loc”. Because the
“Loc” locations greater than “Cmax” only consist of terminal and
nonused nodes, it uses 4-bit data “R” to indicate valid terminal
nodes instead of using 4-set bit assignments “Loc”. Besides, the
“C” memory can be eliminated since it needs not calculate next
Loc address when the terminal node is found.

Since the data structure is different, two memory modules are
used for storing decoding information of {LOC, T, C} and {R,
TR} respectively. Moreover, symbols are stored in the third

memory module. By parallel loading, the time for storing table
into memories is reduced efficiently. An example of memory-
mapping data format is shown in Fig. 2.

2.3 Codeword-Boundary Prediction

The decoding procedures with codeword-boundary prediction
can be explained by the following example. Assuming the
codeword bit_stream is {11001} of the Huffman tree shown in
Fig 2. Because every codeword starts from tree level 1 that only
consists of Loc[1], it is stored in individual register  and can be
accessed directly. At the same time, the 4th Loc, Loc[5], in level
2 is accessed depending on the bit_stream[0:1] = 11, too. Then
they are stored in register “dMDR” and “pMDR” respectively.
Depending on the bit_stream[0:1] = 11 and bit_stream[2:3] = 00,
set11 in Loc[1] and set00 in Loc[5] is selected. According to
branch model set11 in Loc[1], bit_stream[0:1] is not terminal
and its child nodes are not all terminal nodes, neither. On the
other hand, the child-nodes of bit_stream[2:3] are all terminals
and there is a special terminal, whose label is 1, based on the
branch model set00 in Loc[5]. After comparing the 5th bit with
the branch model, it is known that the codeword is the special
terminal and 1 bit remains to be decoded after bit_stream[2:3].
Now, the code-length = 5bits is predicted.

Because there is not enough information to find the matching
symbol address even though the code-length is known. The
decoding procedure described above has to be applied again. The
next Loc address having to access is minus 1 of the sum of C[5]
and “OFSC”, which is the number of non-terminal nodes before
label 00 in Loc[5] stored in dMDR register. Because (C[5]=7) +
(OFSC=1) = 8 > (Cmax=5) , R[(8-5)-1] is accessed and stored in
pMDR in the second cycle. Besides, the Loc data stored in
pMDR is shifted into dMDR. Now, we use the branch model
set00 of Loc[5] stored in dMDR to decode bit_stream[2:3] = 00.
It is not the terminal node, neither. The code-length needs not
predict anymore since it has been known in the previous cycle.
Finally, R[2] is used to detect the terminal node and symbol
address in the third cycle. The symbol address = 14 is minus 1 of
the sum of TR[2]=12 and “OFST”=3, which is the number of
terminal nodes before label 1 in R[2] stored in dMDR.

�

� � � � �

� � 	 
 � � 
 �

�� �� �� ��

� �� �� � �� �� �� �� �

�� �� �� �� � � � ���� ��

������ ���	�















� �


� 




� 
�


� 
��


	 
���

� ��
�

� 

�




� 

�

�

� 

�
�


� 

�
��

� 

��


� 

���

� ��





� ��


�

� ��

�

� ��
�



� ��
��


�������

�������

�����	�

�����
�

�������

����� ����� ���	� ���
�

����������	
����
����������
�������������������������

�������������������������
�	
����
������������������������ ���������������������
�	
����
������������������������ ���������������������
�	
����
������������������������ ���������������������
�	
����
������������������������ ���������������������
�	
����
������������������������ ���������������������
�	
����
������������������������ ���������������������

�

�

�

�

�

�

�

�

	




�

�




�

�

�

�

� � �

��

����������	
���
�
����
��

������������

�������

���

�������

����������	
����
���
�
�� ������

�������������������������
�������������������������
�	�
���������������������������������� �

�
���������

��������	����������������������������� 

�
��������

��������	����������������������������� 

�
��������

��������	����������������������������� 

�
�������


Figure 2: An example of memory-mapping data format.
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2.4 Multi-Processor Architecture

    Next codeword bit stream is available when the code-length is
known. However, VLC decoding processor has to complete the
decoding procedures for each codeword, otherwise it can not find
the matching symbol address. To increase the decoding
throughput, another decoding processor is used to decode the
valid next codeword bit stream. The VLC decoder with dual-
processor architecture is shown in Fig 3. Both processors can
start the decoding procedures when the correct “codeword bit
stream” is ready and the “Start” signal is valid. On the other hand,
the controller can learn about the codeword-boundary by the
“code-length”, which is transmitted from decoding processor
when the “Predict” signal is valid. Because the tree structure data
are the same for each processor, the requirement of memory
space remains the same by using multi-read-port memory
modules. Therefore, the area overhead of multi-processor
architecture is acceptable since only decoding processor needs to
be duplicated.

    The detailed VLC decoder with dual-processor architecture is
shown in Fig. 4. The main components are listed as follows: 1)
the “FSM Controller” controls the operations of whole VLC
decoder. 2) “Stream Assignment Unit” (SAU) selects codeword
bit stream to decode. 3) The dual  “Decoding Processors”
execute codeword-boundary prediction and decoding procedures
to find code-length and matching symbol address. 4) “2-Read
Port Memory {Loc, T, C} & {R, TR}” and “ Initial Loc, T, C
Register” store tree structure data described in the previous
section. 5) The “Address Reorder Buffer” is used to reorder the
symbol address as input codeword. 6) “Symbol memory” stores
the symbols, run/length or data value.

3. INDEX/OFFSET Symbols
To meet real-time processing, high throughput decompression
scheme and simple data recovery procedure are requested.
RUN/LEVEL symbol conjunct with one sign bit is used to
encode DCT coefficients as needed in MPEG standard. Because
only high frequency symbols are defined in coding table for
controlling size, the fixed length RUN/LEVEL following by an
ESCAPE code is used to represent all possible RUN value and

practical DCT coefficients. However, the compression ratio is
reduced in the case of ESCAPE code. To achieve higher
compression ratio, RUN/LENGTH symbol conjunct with
magnitude is used for static images, such as JPEG. The bit length
of magnitude is variable and has to be determined by LENGTH
after VLC decoding procedures are completed. Beside, the data
is recovered when the variable magnitude extends to fix-length
value. As a result, the procedure of data recovery is much more
complex and the decompression rate may not meet real-time
performance. Additionally, the recursive dependency of decoding
procedure can not be broken since the bit-stream, which is
generated by RUN/LEVEL or RUN/LENGTH symbol, is not
pure VLC codewords. The decoding throughput may not meet
the demand of higher-data rate, user-defined table applications
where the time for loading table is taken into account.

The combination of RUN and LEVEL is the reason why it needs
large table to define all possible symbols. Therefore, we split
RUN/LEVEL into 2 kinds of symbols, RUN and non-zero value.
Sixteen RUN symbols, one zero to sixteen zero, is defined. As a
result, any length of RUN can be represented by a sequential of
RUN symbols. The distribution of non-zero value is shown in
Fig. 5, which is generated by analyzing twenty different images.
Because most of the probabilities are in the range between –32 ~
+32, sixty-four OFFSET symbols that exactly represent all non-
zero values in the same range are defined. For the value out of
this rang, the more complex data recovery method, “INDEX +
OFFSET”, is acceptable since the frequency is much lower. The
distance between INDEXs is the size of OFFSET range. As the
example above, INDEX symbols represent the multiple of 64,
such as ±64, ±128, …, are defined. One data recovery example of
“INDEX + OFFSET” is shown as follow:

50 = 64 + (-14) ;  or  - 50 = (- 64) + 14 ;

Additionally, the order of codewords in bit stream is shown
below:

INDEX – OFFSET

As a result, it adds the following symbol value when the INDEX
symbol value is received. Although, it is the facts that 2 symbols
are used to represent one data value that out of the OFFSET
range and the compression ratio may be reduced. The penalty is
as low as the frequency of this case. However, the decoding
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Figure 3: Dual-processor architecture for the proposed
VLC decoder.
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Figure 4: Detail VLC decoder with dual-processor



throughput of pure VLC codeword bit stream, which is formed
by INDEX-OFFSET symbols, can be increased efficiently by
using codeword-boundary prediction algorithm and VLC
decoder with multi-processor architecture.

As the method described above, the user-defined table that can
recover all values between –1024~+1024 is shown in Fig. 6. It
includes 16 RUN, 64 OFFSET, 32 INDEX. Comparison of total
bit lengths with different symbol representations is shown in
Table 1. Simulation results of the decompression rate with the
combination of the proposed VLC decoder and INDEX-OFFSET
symbols are listed in Table 2.
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Figure 6: The 2-bit tree structure of user-defined coding
table.

4. CONCLUSION

In this paper, we have shown a high-throughput, flexible
memory-based VLC decoder design. To reduce the time for
loading decoding information, both data structure partitioning
and parallel loading are used. The recursive dependency of
decoding procedure can be broken by codeword-boundary
prediction. With the proposed dual-processor architecture, the
decompression rate increases efficiently. Moreover, the INDEX-
OFFSET symbol representation is presented to recover data
value by pure VLC codeword bit stream and to reduce table size.
Simulation result shows that decoding throughput of the
combination of the proposed VLC decompression scheme and
INDEX-OFFSET symbol representation can, on the average,
achieve 780Mbps for 12bit symbols with 100MHz-clock rate. As
a result, the proposed VLC decompression scheme with user-
defined table is able to meet the requirement of high data rate,
real-time applications, such as MPEG-4.
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Figure 5: Probability distribution by analyzing 20
different images.

Table 1: Comparison of total bit lengths with different
symbol representations.

              Images

 Symbols

(320×240) (512×512) (512×512)
RUN/LEVEL
(MPEG-2 TB 15) 103503 317764 251343

INDEX-OFFSET
(User-Defined ) 101575 315341 244079

Table 2: Simulation results of the decompression rate of
combining the proposed VLC decoder and INDEX-
OFFSET symbols at 100MHz-clock rate.

              Images
 Symbols

Symbol Count Decoding Cycle Throughput

Lena 22551 34926 775 Mbps
Scene 70145 106141 793 Mbps
Pepper 53440 83969 764 Mbps
Average 780 Mbps


