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ABSTRACT whereg is the volume of speech signal which controls the SNR

A segment-base(, (the zero-th order of cepstral coefficient) level. Fig. 1(b) displays four plots of the 12 MFCC features of
adaptation scheme for PMC-based Mandarin speech recognitiony(t) obtained by combining the samé) and n(t) using four

is proposed in this paper. It incorporates a r@wmodel of different values ofg. It can be found from Fig. 1 that the
speech signal into the PMC retl to improve the gain resulting cepstrum of(t) is very sensitive to the value gf It is
matching between the clean-speech HMM models and the Fesemble to the cepstrumxif) for largeg and to that of(t) for
current noise model. Th&, model is constructed in the training Smallg. So, the conventional PMC method, which uses a rough
phase by jointly modeling the normaliz& with other MFCC gain factor for an entire sentential utterance, will result in under
recognition features to for@:-normalized HMM models. In the ~ Noise-compensations (via using too lagyéor consonant frames
testing phase, it pre-segments the input utterance into syllable-located in the ending part of the utterance and in over noise-
like segments, perfornG,-denormaliztion operations to expand ~compensations (via using too smg)l for vowel frames in the
the Cy-normalized HMM models, and uses them in the PMC beginning part.

method. Compared with the conventional PMC method, the

proposed method can achieve a much better noise compensatiod© cue this drawback, we propose a segment-b@sadaptation
effect due to the use of more precise gain matching in the PMcScheme in this paper to improve the efficiency of the PMC
model combination. Experimental results showed that the base-method on recognizing noisy Mandarin esph. The new
syllable accuracy rate was significantly upgraded for continuous "ecognition method is referred to as the segment-baSed,

noisy Mandarin speech recognition. adapted PMC (SCA-PMC) method. The segment-baSgd
adaptation scheme is implemented based on aGiewodel of
1. INTRODUCTION _speech signal. Intuitively, a dire€, modeling method is to

ointly model it with other MFCC recognition features (i.€;;

Performances of speech recognizers, trained in clean speeclt . . . s
: ' L : ture Gaussian distribution for each HMM state.
databases, usually degrade seriously when operating in nois ) using a mix . .
' y ceg y P 9 yBut this will make the resulting HMM model unsuitable for a

environments. Many methods have been proposestamt years . . i .
y prop Y testing environment with recording volume-control level

1] to make speech recognizergsbust to various corruptin i L . . ;
4] P g 9 ping different from that of the training environment. To avoid this

noises. Among them, the parallel model combination (PMC) h . : .
: o C defect, a newC, modeling method is proposed in this study. It
method is a promising one [2,3]. The basic idea of the PMC odifies the directC, modeling method by embedding Gy

method is to use noise-compensated HMM models, generated b);rTlormaIization operation in the segmental k-means trainin
combining the clean-speech HMM models with the current P 9 . 9

noise model, to recognize the input testing utterance. The ﬁl?r?wzgngedwll—::\]/ll\; n?(())(?(lelstoingtir(]ee:?z;?nir? S(tewtasoef I(:nozr;wrzeéhtie-’stin
mismatch on acoustic characteristics between the testing gp : 9

utterance and the reference HMM models can hence be phase, it applies @ de-normalization operation to expand these

compensated. One serious drawback of the conventional PMCtCI;O-rI[(_)rmallze(_j HMI\IA modeflihso_as t:) m_ake mﬁjB ma'icr_;_r\:vnh
method lies on the use of a rough gain factor for the entire € time-varying volume of the input noisyegeh signal. The,

testing utterance in the model-combination operation to adjust lr:/rer?ilflzatlon ope;?élr%nﬂ:z re?:ﬁg (E)fyegr;t] ?:::::Cgr?g éhett:g)r?r
the energy level of the clean-speech HMM models in order to Co. Cooftsa, Co ’ y

match the SNR of the testing utterance. Although some previous“nearIy scaling it with respect to its local maximum in the

studies have reported that the recognition performance is notfggﬁﬁ:;sﬁgmiﬂtetganE'CrZJES ﬁgiréin(t)ffrtirgere?:%l?dﬁi%%ﬁ? sliem in
sensitive to the rough gain estimate [2], a precise gain estimate 9 9 sy

based on word- or syllable-like segment should be beneficial to silence condlthn. T.WO schemes (.)f modellng_the_ normalZed
the PMC method for the generation of more precise noise- are suggested in this study. One is to model it with the averaged

compensated HVM models to deal wih a contuous tesing VAL <% Hil sele, The o & o s e e
utterance in which energy level varies from syllable to syllable. y ) y 9

This is obviously true because the model combination operation %z;tl\j\;fs] Li?rﬁ)ecé tzbgzreavézjgses(ijar\l/acljlijs(at’rim:ik:)nalio(r)tzzthl-Fll\af/l
is performed in linear spectrum domain. A simple example to g

demonstrate the importance of gain factor in the model- Stear:‘((e).rm-irr:]eagelir;\lol\rlr%a;g:dnor:e de:sgr?tnatiz)sn rj%"zs)d di\bii):jeﬁtrﬁ(te
combination operation is given as follows. Assume that a noisy P ) ) pre-seg [4.5]

speech signaj(t) is generated from the combination of a clean 'nWUtlt?St'n? uttleéance |_nt0 sfylla'l[)r:e-llke SI?ggPeFtkS’ and by f[hen
speech signal(t) and a corrupting additive noisé) by caiculating focalt.o maxima for these Sylable-like segments.

y(t) = gx(t) + n(t) Finally, all C, models are de-normalized with each of these local
Co maxima and used in the PMC method to generate a set of



noise-compensated HMM models to be used to recognize a part _ +15°°(0)). m=0
of the input spech suiwunding the current syllable-like segment. LEP () = @“"se‘ (Coma’““’ COO”SE)(CO' Hy ( D
Jk W

| . . FEAm), m=1p
The remainder of the paper is organized as follows. Section 2

presents the proposed SCA-PMC noisyeesth recognition and
method. The new, model of speech signal is described in detail. X - 25¢er0,0) form=0,n=0
Performance of the SCA-PMC method was examined by 5°P (mp)= HComans ~Cooised 257(0,0)

simulations on a continuous Mandarinesph recognition task XiaW

and is discussed in Section 3. Some conclusions are given in the

last section.

cep
% (mn) others

where u;ie" and TP are the mean vector and the covariance
j.k ik

2. THE SCA-PMC METHOD matrix of thek-th mixture component in stajeof an HMM

cep cep _ : cep
The proposed SCA-PMC noisy egch recognition mebd is model,u and mew are theCo-adapted versions Oﬁ‘m

composed of two phases: a training phase and a testing phaseandzcep Coxmaxw
The job of the training phase is to generate a seCgpf

normalized HMM models for speech signals. Fig. 2 shows a flow
chart of the training algorithm. It differs from the conventional
segmental k-means training algorithm mainly on inserting an mixture components. Thesg-adapted HMM models are then
additional Co normalization operation between the speech ysed in the PMC method to be combined with the current noise
segmenting operation and the model updating operationCfhe  model to generat€,-adapted, noise-compensated HMM models.
normalization operation consists of two steps. The first one is t0 The current noise model is estimated from the input testing
find the maximum ofC, for each syllable segment. The second ytterance by using the method proposed previously in [4]. Due to

is the(:oxrnax value of thew-th final-segment,

andp is the order of MFCC features. It is noted that, for the first
Co modeling schemeﬂgep(o) in above equation equals 0 for all

step is to normaliz€, value of each frame by the fact that the close-form solution to find a perfect model-
c = Cot ~ Cooftset combination operator does not exist yet, the log-normal
ot ™ Comax — Cooficet approximation [2] is used in this study. Lastly, these HMM

models are used in the recognition search to find the best
recognized base-syllable sequence. It is noted that,Cthe
component of the noise-compensated HMM models is not taken
as a recognition feature in the firg§ modeling scheme, while it

is taken as an additional recognition feature for the se€nd
modeling scheme.

where Cy; denotes theC, value of framet, Cyomaxis the Co
maximum of the syllable segment which includes framand
Coofisa IS the floor value o, which represents the offset of the
recording device in the silence condition. Two scheme€yof
modeling for constructing th€,-normalized HMM models are
suggested in this study. One is to moui}(glyt by its averaged

value 651. for statej of an HMM. The other is to combine the Several advantages of the proposed SCA-PMC method can be
' found as compared with the conventional PMC method which

residue, C,, - C, ;, with other MFCC features (i.65,-C;) and uses a rough gain matching factor estimated for an entire testing
to jointly model them by a mixture Gaussian distribution for each utterance. Firstly, it can track both the local phonemic loudness
HMM state. variation (via the use o@;j) and the global intonational

. . . ) loudness variation (via the use gg ). This makes it has a
The job of the testing phase is to expand théseaormalized hmaxw

HMM models and to use them in the PMC method to recognize better noise compensation effect. This also makes it insensitive
the input testing utterance. Fig. 3 displays a block diagram of theto the volume adjustment of the recording device. Secondly, it
testing phase of the SCA-PMC method. It first pre-segreaci can takeCyas an additional recognition feature to assist in the
input testing utterance into syllable-like segment by using an recognition. Thirdly, the gain matching between the speech
RNN-based broad-class discriminator and an finite-state- models and the noise model, required in the PMC model
machine (FSM) [5]. The function of the RNN-based broad-class combination, is implicitly achieved by the proposec,
discriminator is to discriminate eachput frame among three  adaptation scheme. Lastly, the de-normalization faClgyax is
broad-classes dfnal, initial, and silence. Outputs of the RNN  always estimated from a frame with high SNR. This makes it be
are then used to drive the FSM to divide the input utterance into @ reliable estimate.
segments of four typefinal, initial, silence, and transition. It is
noted that eacfinal-segment coincides roughly with tfigal of 3. EXPERIMENTAL RESULTS
a Mandarin syllable. We then find/ _ of the noisy speeci(t)
' Effectiveness of the proposed method was examined by
simulation on a speaker-dependent continuous Mandarin base-
is estimated froncy by using the noise masking method [6].  syllable recognition task. A clean-speech database provided by
Then, theC, de-normalization operation is performed to expand the Chunghwa _Telecommunicat?on Laboratories was used. The.
theseCy-normalized HMM models by database contained 452 sentential utterances and 200 pgragraphlc
utterances recorded at a 20 kHz sampling rate. It consisted, in
total, of 35231 syllables including 28197 training syllables and
7034 testing syllables. All sech signals were first pre-

for eachfinal-segment. Then, the _ of the (clean) speeoit)



processed for each of 20-ms Hammingxdowed frame with 10- can be simultaneously used in the PMC method. The
ms shift. A set of recognition features including 13 MFCC effectiveness of using likelihood compensation to assist in noisy
(including Cp), 12 delta MFCC, and a delta log-energy was speech recognition can be seen by comparing the accuracy rates
computed for each frame. All noisy speech databases used in thef ‘PMC/LC’ with these of ‘PMC’. The details about the
following tests were artificially generated by adding white noises likelihood compensation can be found in [4]. Lastly, the
of SPIB (Signal Processing Information Base) [7] with different accuracy rates of ‘SCA-PMC-2/LC’ at both 18dB and 30dB are
SNRs into the above clean-speech database. slightly better than these of ‘Match’.

The HMM recognizer used 139 sub-syllable models as basic
recognition units including 100 3-state right-context-dependent
initial models and 39 5-state context-independerati models.

Table 1. The experimental results of noisy Mandarin base-
syllable recognition under white noise.

. - Recognition 6dB 18dB 30dB
Besides, a single-state utterance-dependent model was used for,
; . . R .. Scheme
noise. In each state, a mixture Gaussian distribution with
diagonal covariance matrices was used. The number of mixture p1o:-h 64.9 743 79.7
in each state was variable and depended on the number of
training samples, but a maximum number of 10 mixtures was set. pmc 41.9 66.0 705
A one-stage DP search with cumulative bounded-state-duration
constraints was used to find the best recognized base-syllable SCA-PMC-1 50.2 70.0 73.4
sequence. The base-syllable accuracy rate was used to evaluate
the recognition performance. The frequency-weighted SNR [8] is PMC/LC 51.0 71.0 73.4
used in the assessment of the noise effect to speech recognition.
SCA-PMC-1/LC 55.9 73.6 79.2
We start with checking the noise compensation effect oCthe
9 P i SCA-PMC-2/LC  55.7 75.6 80.0

adapted, noise-compensated HMM models produced by the
proposed SCA-PMC method. Figs. 4(a) and 4(b) shows,
respectively, the noise-compensatégdand C, contours, of the
correct HMM mixture sequence, generated by the conventional
PMC method. The correspondif®y andC; contours produced

by the SCA-PMC method are shown in Figs. 4(c) and 4(d).
Obviously, bothCy andC; contours produced by the SCA-PMC
method match much better to their corresponding counterparts of
the noisy signal than these produced by the conventional PMC
method. This confirmed that a better noise compensation effect
can be achieved by the SCA-PMC method.

5. SUMMARY

A modified PMC method for noisy Mandarinesth recognition

has been proposed in this paper. It incorporates adgenodel

of speech signal into the PMC rhed for improving its
recognition efficiency. Experimental results have confirmed that
the proposed method has a much better noise compensation
effect and hence outperforms the conventional PMC method.

We then examine the performance of the proposed SCA-PMC
method for noisy Mandarin base-syllable recognition. The
following recognition schemes were tested:

(1) The ‘Match’ scheme: the HMM method trained and tested
under a matched condition. Its performances are taken as
benchmarks.

(2) The ‘PMC’ scheme: the conventional PMC method.

(3) The ‘'SCA-PMC-1’ scheme: the proposed SCA-PMC method
using the firstCy modeling scheme.

(4) The 'PMC/LC’ scheme: a modified version of ‘PMC’ with  [1] Yifan Gong, "Speech recognition in noisy environments: A
board-class based likelihood compensation [4]. survey", Speech Communication, Vol. 1fp. 261-291,

(5) The ‘SCA-PMC-1/LC’ scheme: an extended version of 1995
‘SCA-PMC-1"  with  board-class based likelihood [2] M. J. F. Gales and S. J. Young, “Cepstral parameter
compensation. compensation for HMM recognition in noise3peech

(6) The ‘SCA-PMC-2/LC’ scheme: the proposed SCA-PMC CommunicationVol. 12, pp. 231-240, 1993.
method using the secon@, modeling scheme and with  [3] M. J. F. Gales and S. J. Young, “Robust continuoeecp
board-class based likelihood compensation. recognition using parallel model combinatiolFEE Trans.

Table 1 shows the experimental results of these recognition Speectand Audio Processing/ol. 5, pp. 352-359, 1996.

schemes under white noise at 6dB, 18dB and 30dB. It is can be[4] W. T. Hong and S. H. Chen, “A robust RNN-based pre-

found from Table 1 that all schemes with the SCifadaptation classification for Noisy Mandarin speech recognition,”

scheme outperform significantly over their counterparts without EuroSpeech QWVol. 3, pp. 1083-1086, 1997.

SCA. This confirms the effectiveness of using the prop&&ed  [5] S. H. Cheret. al, “An RNN-based preclassification method
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Fig. 1(a) The MFCC features of clean spegand noisen. (b)
The plots of the MFCC features of noisy siggabbtained by

combining the sameandn using four different values of

Training Utterance

\_, Viterbi Find Co.nax co
Segmentation normalization
syllable
e [
i Update Co-
Co-normalized é
HMM models * | Conveme ? normalized HMM
models

Fig. 2. A flow chart of the training phase of the SCA-PMC

method.
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Fig. 3. A block diagram of the testing phase of the SCA-PMC
method.
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Fig. 4. The noise-compensatégd andC, contours produced by
(a)(b) the conventional PMC and (c)(d) SCA-PMC. The solid
lines represent contours of the original noisy speech and the
dotted lines denote contours of correct mixture sequence
determined by Viterbi segmentation.



