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ABSTRACT
A segment-based C0 (the zero-th order of cepstral coefficient)
adaptation scheme for PMC-based Mandarin  speech recognition
is proposed in this paper. It incorporates a new C0 model of
speech signal into the PMC method to improve the gain
matching between the clean-speech HMM models and the
current noise model. The C0 model is constructed in the training
phase by jointly modeling the normalized C0 with other MFCC
recognition features to form C0-normalized HMM models. In the
testing phase, it pre-segments the input utterance into syllable-
like segments, performs C0-denormaliztion operations to expand
the C0-normalized HMM models, and uses them in the PMC
method. Compared with the conventional PMC method, the
proposed method can achieve a much better noise compensation
effect due to the use of more precise gain matching in the PMC
model combination. Experimental results showed that the base-
syllable accuracy rate was significantly upgraded for continuous
noisy Mandarin speech recognition.

1. INTRODUCTION
Performances of speech recognizers, trained in clean speech
databases, usually degrade seriously when operating in noisy
environments. Many methods have been proposed in recent years
[1] to make speech recognizers robust to various corrupting
noises. Among them, the parallel model combination (PMC)
method is a promising one [2,3]. The basic idea of the PMC
method is to use noise-compensated HMM models, generated by
combining the  clean-speech HMM models with the current
noise model, to recognize the input testing utterance. The
mismatch on acoustic characteristics between the testing
utterance and the reference HMM models can hence be
compensated. One serious drawback of the conventional PMC
method lies on the use of a rough gain factor for the entire
testing utterance in the model-combination operation to adjust
the energy level of the clean-speech HMM models in order to
match the SNR of the testing utterance. Although some previous
studies have reported that the recognition performance is not
sensitive to the rough gain estimate [2], a precise gain estimate
based on word- or syllable-like segment should be beneficial to
the PMC method for the generation of more precise noise-
compensated HMM models to deal with a continuous testing
utterance in which energy level varies from syllable to syllable.
This is obviously true because the model combination operation
is performed in linear spectrum domain. A simple example to
demonstrate the importance of gain factor in the model-
combination operation is given as follows. Assume that a noisy
speech signal y(t) is generated from the combination of a clean
speech signal x(t) and a corrupting additive noise n(t) by
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where g is the volume of speech signal which controls the SNR
level. Fig. 1(b) displays four plots of the 12 MFCC features of
y(t) obtained by combining the same x(t) and n(t) using four
different values of g. It can be found from Fig. 1 that the
resulting cepstrum of y(t) is very sensitive to the value of g. It is
resemble to the cepstrum of x(t) for large g and to that of n(t) for
small g. So, the conventional PMC method, which uses a rough
gain factor for an entire sentential utterance, will result in under
noise-compensations (via using too large g) for consonant frames
located in the ending part of the utterance and in over noise-
compensations (via using too small g) for vowel frames in the
beginning part.

To cue this drawback, we propose a segment-based C0 adaptation
scheme in this paper to improve the efficiency of the PMC
method on recognizing noisy Mandarin speech. The new
recognition method is referred to as the segment-based, C0-
adapted PMC (SCA-PMC) method. The segment-based C0

adaptation scheme is implemented based on a new C0 model of
speech signal. Intuitively, a direct C0 modeling method is to
jointly model it with other MFCC recognition features (i.e., C1-
Cp) using a mixture Gaussian distribution for each HMM state.
But this will make the resulting HMM model unsuitable for a
testing environment with recording volume-control level
different from that of the training environment. To avoid this
defect, a new C0 modeling method is proposed in this study. It
modifies the direct C0 modeling method by embedding a C0

normalization operation in the segmental k-means training
algorithm with a goal to generate a set of compact, C0-
normalized HMM models in the training phase. In the testing
phase, it applies a C0 de-normalization operation to expand these
C0-normalized HMM models so as to make their C0’s match with
the time-varying volume of the input noisy speech signal. The C0

normalization operation is realized by first subtracting the floor
level of C0, C0,offset, from the C0 value of each frame, and by then
linearly scaling it with respect to its local maximum in the
syllable-segment to which the current frame belongs. C0,offset is
resulted from the background noise of the recording system in
silence condition. Two schemes of modeling the normalized C0

are suggested in this study. One is to model it with the averaged
value for each HMM state. The other is to extend the first
scheme by further jointly modeling the residue of the normalized
C0, with respect to its averaged value, with all other MFCC
features using a mixture Gaussian distribution for each HMM
state. The de-normalization operation is realized by first
performing an RNN-based pre-segmentation [4,5] to divide the
input testing utterance into syllable-like segments, and by then
calculating local C0 maxima for these syllable-like segments.
Finally, all C0 models are de-normalized with each of these local
C0 maxima and used in the PMC method to generate a set of



noise-compensated HMM models to be used to recognize a part
of the input speech surrounding the current syllable-like segment.

The remainder of the paper is organized as follows. Section 2
presents the proposed SCA-PMC noisy speech recognition
method. The new C0 model of speech signal is described in detail.
Performance of the SCA-PMC method was examined by
simulations on a continuous Mandarin speech recognition task
and is discussed in Section 3. Some conclusions are given in the
last section.

2. THE SCA-PMC METHOD

The proposed SCA-PMC noisy speech recognition method is
composed of two phases: a training phase and a testing phase.
The job of the training phase is to generate a set of C0-
normalized HMM models for speech signals. Fig. 2 shows a flow
chart of the training algorithm. It differs from the conventional
segmental k-means training algorithm mainly on inserting an
additional C0 normalization operation between the speech
segmenting operation and the model updating operation. The C0

normalization operation consists of two steps. The first one is to
find the maximum of C0 for each syllable segment. The second
step is to normalize C0 value of each frame by
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where C0,t denotes the C0 value of frame t, C0,max is the C0

maximum of the syllable segment which includes frame t, and
C0,offset is the floor value of C0 which represents the offset of the
recording device in the silence condition. Two schemes of C0

modeling for constructing the C0-normalized HMM models are
suggested in this study. One is to model 

tC ,0′  by its averaged

value 
jC ,0′  for state j of an HMM. The other is to combine the

residue,  
jt CC ,0,0 ′−′ , with other MFCC features (i.e., C1-Cp) and

to jointly model them by a mixture Gaussian distribution for each
HMM state.

The job of the testing phase is to expand these C0-normalized
HMM models and to use them in the PMC method to recognize
the input testing utterance. Fig. 3 displays a block diagram of the
testing phase of the SCA-PMC method. It first pre-segment each
input testing utterance into syllable-like segment by using an
RNN-based broad-class discriminator and an finite-state-
machine (FSM) [5]. The function of the RNN-based broad-class
discriminator is to discriminate each input frame among three
broad-classes of final, initial , and silence. Outputs of the RNN
are then used to drive the FSM to divide the input utterance into
segments of four types: final, initial , silence, and transition. It is
noted that each final-segment coincides roughly with the final of
a Mandarin syllable. We then find yC max,0

 of the noisy speech y(t)

for each final-segment. Then, the xC max,0
 of the (clean) speech x(t)

is estimated from yC max,0
 by using the noise masking method [6].

Then, the C0 de-normalization operation is performed to expand
these C0-normalized HMM models by
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where cep
x kj ,
~µ  and cep

x kj ,
~Σ  are the mean vector and the covariance

matrix of the k-th mixture component in state j of an HMM
model, cep

wx kj ,,
µ  and cep

wx kj ,,
Σ are the C0-adapted versions of cep

x kj ,
~µ

and cep
x kj ,
~Σ , x

wC max,,0
 is the xC max,0

 value of the w-th final-segment,

and p is the order of MFCC features. It is noted that, for the first
C0 modeling scheme, (0)

,
~
cep
x kj

µ  in above equation equals 0 for all

mixture components. These C0-adapted HMM models are then
used in the PMC method to be combined with the current noise
model to generate C0-adapted, noise-compensated HMM models.
The current noise model is estimated from the input testing
utterance by using the method proposed previously in [4]. Due to
the fact that the close-form solution to find a perfect model-
combination operator does not exist yet, the log-normal
approximation [2] is used in this study. Lastly, these HMM
models are used in the recognition search to find the best
recognized base-syllable sequence. It is noted that, the C0

component of the noise-compensated HMM models is not taken
as a recognition feature in the first C0 modeling scheme, while it
is taken as an additional recognition feature for the second C0

modeling scheme.

Several advantages of the proposed SCA-PMC method can be
found as compared with the conventional PMC method which
uses a rough gain matching factor estimated for an entire testing
utterance. Firstly, it can track both the local phonemic loudness
variation (via the use of 

jC ,0′ ) and the global intonational

loudness variation (via the use of x
wC max,,0
). This makes it has a

better noise compensation effect. This also makes it insensitive
to the volume adjustment of the recording device. Secondly, it
can take C0 as an additional recognition feature to assist in the
recognition. Thirdly, the gain matching between the speech
models and the noise model, required in the PMC model
combination, is implicitly achieved by the proposed C0

adaptation scheme. Lastly, the de-normalization factor C0,max is
always estimated from a frame with high SNR. This makes it be
a reliable estimate.

3. EXPERIMENTAL RESULTS

Effectiveness of the proposed method was examined by
simulation on a speaker-dependent continuous Mandarin base-
syllable recognition task. A clean-speech database provided by
the Chunghwa Telecommunication Laboratories was used. The
database contained 452 sentential utterances and 200 paragraphic
utterances recorded at a 20 kHz sampling rate. It consisted, in
total, of 35231 syllables including 28197 training syllables and
7034 testing syllables. All speech signals were first pre-



processed for each of 20-ms Hamming-windowed frame with 10-
ms shift. A set of recognition features including 13 MFCC
(including C0), 12 delta MFCC, and a delta log-energy was
computed for each frame. All noisy speech databases used in the
following tests were artificially generated by adding white noises
of SPIB (Signal Processing Information Base) [7] with different
SNRs into the above clean-speech database.

The HMM recognizer used 139 sub-syllable models as basic
recognition units including 100 3-state right-context-dependent
initial  models and 39 5-state context-independent final models.
Besides, a single-state utterance-dependent model was used for
noise. In each state, a mixture Gaussian distribution with
diagonal covariance matrices was used. The number of mixture
in each state was variable and depended on the number of
training samples, but a maximum number of 10 mixtures was set.
A one-stage DP search with cumulative bounded-state-duration
constraints was used to find the best recognized base-syllable
sequence. The base-syllable accuracy rate was used to evaluate
the recognition performance. The frequency-weighted SNR [8] is
used in the assessment of the noise effect to speech recognition.
  
We start with checking the noise compensation effect of the C0-
adapted, noise-compensated HMM models produced by the
proposed SCA-PMC method. Figs. 4(a) and 4(b) shows,
respectively, the noise-compensated C0 and C1 contours, of the
correct HMM mixture sequence, generated by the conventional
PMC method. The corresponding C0 and C1 contours produced
by the SCA-PMC method are shown in Figs. 4(c) and 4(d).
Obviously, both C0 and C1 contours produced by the SCA-PMC
method match much better to their corresponding counterparts of
the noisy signal than these produced by the conventional PMC
method. This confirmed that a better noise compensation effect
can be achieved by the SCA-PMC method.

We then examine the performance of the proposed SCA-PMC
method for noisy Mandarin base-syllable recognition. The
following recognition schemes were tested:
(1) The ‘Match’ scheme: the HMM method trained and tested

under a matched condition. Its performances are taken as
benchmarks.

(2) The ‘PMC’ scheme: the conventional PMC method.
(3) The ‘SCA-PMC-1’ scheme: the proposed SCA-PMC method

using the first C0 modeling scheme.
(4) The ‘PMC/LC’ scheme: a modified version of ‘PMC’ with

board-class based likelihood compensation [4].
(5) The ‘SCA-PMC-1/LC’ scheme: an extended version of

‘SCA-PMC-1’ with board-class based likelihood
compensation.

(6) The ‘SCA-PMC-2/LC’ scheme: the proposed SCA-PMC
method using the second C0 modeling scheme and with
board-class based likelihood compensation.

Table 1 shows the experimental results of these recognition
schemes under white noise at 6dB, 18dB and 30dB. It is can be
found from Table 1 that all schemes with the SCA C0-adaptation
scheme outperform significantly over their counterparts without
SCA. This confirms the effectiveness of using the proposed C0

modeling method in the PMC method. We also find that ‘SCA-
PMC-1/LC’ and ‘SCA-PMC-2/LC’ have the best accuracy rates.
This shows that SCA and the likelihood compensation scheme

can be simultaneously used in the PMC method. The
effectiveness of using likelihood compensation to assist in noisy
speech recognition can be seen by comparing the accuracy rates
of ‘PMC/LC’ with these of ‘PMC’. The details about the
likelihood compensation can be found in [4]. Lastly, the
accuracy rates of ‘SCA-PMC-2/LC’ at both 18dB and 30dB are
slightly better than these of ‘Match’.

Table 1. The experimental results of noisy Mandarin base-
syllable recognition under white noise.

Recognition
Scheme

6dB 18dB 30dB

Match 64.9 74.3 79.7

PMC 41.9 66.0 70.5

SCA-PMC-1 50.2 70.0 73.4

PMC/LC 51.0 71.0 73.4

SCA-PMC-1/LC 55.9 73.6 79.2

SCA-PMC-2/LC 55.7 75.6 80.0

5. SUMMARY

A modified PMC method for noisy Mandarin speech recognition
has been proposed in this paper. It incorporates a new C0 model
of speech signal into the PMC method for improving its
recognition efficiency. Experimental results have confirmed that
the proposed method has a much better noise compensation
effect and hence outperforms the conventional PMC method.
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Fig. 1(a) The MFCC features of clean speech x and noise n. (b)
The plots of the MFCC features of noisy signal y obtained by
combining the same x and n using four different values of g.
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Fig. 4. The noise-compensated C0 and C1 contours produced by
(a)(b) the conventional PMC and (c)(d) SCA-PMC. The solid
lines represent contours of the original noisy speech and the
dotted lines denote contours of correct mixture sequence
determined by Viterbi segmentation.


