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ABSTRACT

For channel modelisation, modulation and analogue scram-
bling, the modern telecommunications use often linear pe-
riodic time-varying filters. The authors recall the definition
of these filters. In particular, it is shown that a stationary
process subjected to a linear periodic filter becomes cyclo-
stationary. In this paper, we show that any linear periodic
filter can be realized by means of periodic clock changes.
An original implementation method is then introduced. An
example illustrates the periodic clock change implementa-
tion and presents the advantages of the new implementation
technique in comparison to the classical one.

1. INTRODUCTION

In telecommunications, signals submitted to a Linear Peri-
odically Time-Varying (LPTV) filter [1] are often encoun-
tered. Thus, this filter can correspond to a transmission
channel modelisation [2], a modulation [3] or an analogue
scrambling system [4]. In this paper, we show that linear
periodic filters can be obtained by a new implementation
method using periodic clock changes [5].

In the first section, we recall some definitions. We see
that a stationary process subjected to a linear periodic filter
becomes cyclostationary [6]. Next, we point out that linear
periodic filters can be implemented originally by means of
periodic clock changes. Finally, a periodic clock change is
implemented to study the bounds computation and to present
the important saving of time obtained.

2. DEFINITIONS

2.1. Stationary process

We letZ = fZ(t); t 2 Rg be a random stationary pro-
cess, zero mean and mean square continuous.�Z(!) is the
Cramér-Loève spectral representation [7] ofZ(t) and the
two are related by:

Z(t) =

+1Z
�1

ei!td�Z(!) (1)

We noteRZ(�) its autocorrelation function andSZ(!) its
spectrum defined by:

RZ(�) = E [Z(t)Z�(t� �)] =

+1Z
�1

ei!�dSZ(!) (2)

2.2. Linear periodic time-varying filter

Let ~h be a continuous-time linear filter. Its responseX(t)
to an inputZ(t) may in general be written as:

X(t) =

+1Z
�1

h(t; s)Z(s)ds (3)

whereh(t; s) is the filter impulse response. We will study
the case where~h is an LPTV system [1], i.e. where there
exists a periodT = 2�=!0 such that:

h(t+ T; s+ T ) = h(t; s) (4)

The time-varying frequency response of the LPTV filter~h
is defined by:

Ht(!) =

+1Z
�1

h(t; t� �)e�i!�d� (5)

It is worth noting thatHt(!) is periodic int. We then define
its Fourier development, assumed to be sufficiently regular,
by:

Ht(!) =
+1X

k=�1

 k(!)e
ik!0t (6)

where the Fourier coefficients are expressed as:

 k(!) =
1

T

TZ
0

Ht(!)e
�ik!0tdt (7)



2.3. Periodic clock changes

The response of a stationary processZ(t) subjected to a
Periodic Clock Change (PCC) was defined in [5] by:

X(t) = g(t)Z [t� f(t)] (8)

wheref(t) is a real measurable function andg(t) is a real
integrable function,f(t) andg(t) beingT = 2�=!0 peri-
odic. If we denote by�(t) the Dirac function, then, in the
sense of distributions, the PCC corresponds to an LPTV fil-
ter whose impulse response is:

h(t; s) = g(t)�(t� f(t)� s) (9)

A PCC is also an LPTV filter of frequency response:

Ht(!) = g(t)e�i!f(t) (10)

3. RESPONSE OF A STATIONARY PROCESS
THROUGH A LINEAR PERIODIC FILTER

3.1. Continuous-time series representation ofX(t)

X(t) is the filtering ofZ(t) by the LPTV filter~h of impulse
responseh(t; s) and frequency responseHt(!). Using (1)
and (5), the expression ofX given by equation (3) becomes:

X(t) =
+1R
�1

Ht(!)e
i!td�Z(!) (11)

The Fourier representation ofHt(!) (6) allows us to define
a continuous-series representation ofX(t) such that:

X(t) =

+1X
k=�1

eik!0tGk(t) (12)

with:

Gk(t) =

+1Z
�1

ei!t k(!)d�Z(!) (13)

Gk(t) is the response toZ(t) through the linear time-invariant
filter whose frequency response is k(!), k’th coefficient of
the Fourier development of~h frequency response.

3.2. Stochastic parameters ofX(t)

SinceZ(t) is zero mean, then allGk(t) are zero mean.
Therefore the above decomposition shows thatX(t) is a
zero mean process. From the Wiener-Lee relations, we can
easily obtain the autocorrelation function ofX(t) and its
two-dimensional spectral density:

RX (t;�)=
+1P

m;l=�1

eim!0t

+1R
�1

ei(!+l!0)� m+l(!) �l (!)dSZ(!)

(14)

dSX(t;!)=
+1P

m;l=�1

eim!0t m+l(!�l!0) �l (!�l!0)dSZ(!�l!0)

(15)
They are both periodic int. X(t) is thus cyclostationary in
the wide sense [6].

4. REALIZATION OF LINEAR PERIODIC FILTERS
BY MEANS OF PERIODIC CLOCK CHANGES

4.1. Classical method

Let X(t) be the response of the stationary processZ(t)
through the linear periodic filter~h. We have previously
seen thatX(t) admits the continuous series representation
(12). ForZ(t) bandlimited on[�l!0; l!0[, it allows to ob-
tainX(t) on [�(N � l)!0; (N � l)!0[ for N > l by the
classical implementation [6]:

Figure 1: Classical implementation of an LPTV filter

This filter generation method is easy to realize. However, it
has also to be judged on the two following criterions: the
correspondence with a physical model and the implementa-
tion cost. On the one hand, a filter is physically described by
its impulse response. Therefore, thef k(!)gk2Z functions
and the above generation method do not directly represent
the nature of the filter. On the other hand, the implemen-
tation cost depends on two parameters: the bandwith of the
input signal and the bandwith for the observation window of
the output signal. In a large band case, a lot of operations is
then required. Thus, the above generation method presents
important drawbacks.

4.2. Use of periodic clock changes

Let ~h0 be a linear time-invariant filter of frequency response
H0(!). The algorithm given in [8] based on the Prony’s



technique applied in the frequency domain allows the fol-
lowing approximation:

H0(!) =

NX
k=�N

gke
�jfk! (16)

wherefk andgk are real coefficients. This result shows that
the responseX(t) to the stationary processZ(t) through the
linear periodic filter~h can be approximated by:

X(t) =

+1X
k=�1

gk(t)Z(t� fk(t)) (17)

where theffk(t)gk2Z are real periodic measurable func-
tions and thefgk(t)gk2Z are real periodic integrable func-
tions. In (8), we have given the definition of a particular
class of linear periodic filters, the periodic clock changes.
(17) shows that linear periodic filters can be approximated
by a sum of periodic clock changes. The following imple-
mentation can then be proposed:

Figure 2: Implementation of an LPTV filter by means of
PCC

Firstly, one interest of such an approximation is that it cor-
responds to the usual model of timing jitter. It has been
particularly used in communication. Secondly, the imple-
mentation cost of this generation method only depends on
complexity of the filter. This new method corrects all the
disadvantages of the classical one: it corresponds to a phys-
ical model and its implementation cost just depends on the
filter. Therefore, the generation of periodic clock changes
presents one difficulty: bounds computation. Indeed, the
initial signal is always defined on a finite window. After
time jitter, some points go out of the windows and cannot
be computed. The solution of this problem is to realize a
block computation, the block being periodised. It is illus-
trated by the following example.

4.3. Example

We study now the practical implementation of a periodic
clock change. LetZ(t) be a stationary process of spectral
support included in[�!0=2; !0=2[. X(t), response ofZ(t)
through a periodic clock change~h, is observed on the spec-
tral support[�(2N + 1)!0=2; (2N + 1)!0=2[. ~h is given
by: �

f(t) = �� sin(!0t)
g(t) = 1

(18)

From (7) and (10), we deduce that in this case thef k(!)gk2Z
are equal to:

 k(!) =

+1Z
�1

ei(�! sin(!0t)�k!0t)dt = Jk(�!) (19)

whereJk(�!) is thek’th order Bessel function. We can
then implement~h by the classical method or by means of a
periodic clock change. As we are in a real case, we work on
a finite temporal window of lengthW . We choseW mul-
tiple of T to respect the spectral expression ofX . Figure 3
gives a realization ofZ(t) for W = 10000 andT = 100.

Figure 3: Input signalZ(t)

Figure 4 presents the realization ofX(t) obtained by the
classical method for� = 1000 andN = 8.
We compare this result to a generation done by means of
periodic clock changes.Figure 5 shows that bounds error ap-
pears.
To avoid this error, a block computation can be introduced.
The block of lengthW is submitted to a periodisation. It
permits to define any point even after timing jitter, but con-
serves the spectral expression ofX . The response obtained
by means of periodic clock changes is then the same as this
given by the classical method. Figure 6 presents the number
of operations for the classical method implementation (—
—) and for the implementation by means of periodic clock
changes (– – –) in function of the observed bandwith.
Our method gives the same results as the classical one and
permits an important saving of time for a large observed
bandwith.



Figure 4: Observed signalX(t) with classical method im-
plementation

Figure 5: Error due to real time implementation by means
of periodic clock changes

Figure 6: Number of operations needed for implementation

5. CONCLUSION

In this paper, we have presented a new method of linear pe-
riodic filter implementation. It is done by means of periodic
clock changes. It is particularly easy to realize and permits
to save a lot of time. The only difficulty of periodic clock
changes use, bounds computation, has been solved. This
result is verified on an example. It opens then the way to
real-time implementation with complicated filters and high
protected systems for channel modelisation, modulation and
scrambling.
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