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ABSTRACT

In this paper, we examine the relationship between frequency esti-
mation and phase unwrapping and a problem in algorithmic num-
ber theory known as the nearest lattice point problem. After briefly
reviewing the theory of these three topics, we introduce an inter-
pretation of the maximum likelihood frequency estimation prob-
lem as a nearest lattice point problem. We develop an algorithm
based on this approach and present numerical results to compare
its performance with other estimation techniques. We find that the
algorithm has good powers of estimation.

1. INTRODUCTION

The purpose of this paper is to elucidate the connection between
the problem of frequency estimation and its solution by maximisa-
tion of the periodogram and by methods of phase unwrapping and
the number theoretic problem of determining the nearest point in a
lattice to a given point with respect to a norm.

The frequency estimation problem, by which we mean the es-
timation of the frequency of a single tone in noisy, sampled data, is
one of the core studies in signal processing. It has applications in
radar, sonar, telecommunications and medicine. In their paper [1],
Rife & Boorstyn proposed a model for the problem in which com-
plex data is used, containing a cisoid corrupted by additive white
complex Gaussian noise. They found that the maximum likeli-
hood solution to the problem is obtained through maximisation of
the periodogram of the sampled data.

Although the amount of computational effort which must be
expended to maximise the periodogram is not too great, research
has been conducted on algorithms which can estimate frequency
nearly as well but with less effort. Tretter [2] proposed using
the unwrapped phase of a signal to perform frequency estima-
tion. He showed that linear regression can be performed on the un-
wrapped phases, yielding an accurate estimate of frequency when
the signal-to-noise ratio (SNR) is sufficiently high. Simple phase
unwrapping and linear regression can both be performed more
quickly than the maximum likelihood technique for sufficiently
large data sets.

A problem in algorithmic number theory is the determina-
tion of the nearest element of a point lattice to any other given
point according to a prescribed norm. It has been conjectured [3]
that this problem is computationally infeasible under some con-
ditions. Therefore, there is some interest in discovering ways of
finding a provably almost-nearest lattice point with only a modest

amount of computation. One such algorithm has been formulated
by Babai [4], drawing on the lattice reduction algorithm of Lenstra,
Lenstra & Lovász [5].

Our aim in this paper is to demonstrate the similarity between
the three problems and to apply Babai’s algorithm to the frequency
estimation problem. We will show that this algorithm can be in-
terpreted as explicitly unwrapping the phase of the signal and per-
forming a weighted linear regression on the result. We will demon-
strate through numerical simulation that it can operate at reason-
ably low SNRs. However, our algorithm is not intended to be
a practical replacement to the other algorithms, but rather serves
to illustrate the connection between the two seemingly disparate
practices of lattice reduction and frequency estimation.

2. SIGNAL MODEL

We will assume a record of complex data of lengthN containing a
constant amplitude cisoid in additive white Gaussian noise. Each
datumzn, n = 1; 2; : : : ; N is an instance of a complex random
variableZn where

Zn = bexp[i(2�fcn+ �)] + �n; (1)

b, fc and� are parameters representing the amplitude, frequency
and phase of the signal. The�n are independent, identically-
distributed complex normal random variables with variance�2.

For convenience, we writeAn = jznj and�n = \zn to rep-
resent the instantaneous amplitude and phase, respectively, of the
signal.

3. THE PERIODOGRAM AND PHASE UNWRAPPING

Rife & Boorstyn [1] showed that, whenb, fc and� are unknown
parameters, maximum likelihood estimates can be found by max-
imising the periodogram of the data, it being defined as

�(f) =

�����
NX
n=1

znexp(�i2�fn)

�����:

The maximum likelihood estimate forf is

f̂ = arg max
�
1
2
<f6

1
2

�(f): (2)



From a computational point of view, it is not immediately clear
how we should go about obtaining the maximum likelihood esti-
mate. Rife & Boorstyn suggest a two-step approach. In the first
step, we compute the Fast Fourier Transform (FFT) of the data,
zero-padded to twice or four times its original length (which is as-
sumed to be a power of two). This makes available to us values of
�(f) at fn = n=(MN), n = 0; 1; : : : ;MN � 1 whereM = 2
orM = 4 is the factor by which the original record has been zero-
padded. In the second step, we choose that indexl such that the
absolute value of the FFT of the data is maximised atfl. We then
refine the estimate by executing a gradient ascent method, such as
the secant method, fromfl. We terminate the method when the
difference,�, between successive refinements in the estimate is ap-
preciably less than the Cram´er-Rao bound, which is to say that

��
3�2

�2b2N(N2 � 1)
:

Rife & Boorstyn do not prove that this procedure generates
an estimate which satisfies (2). Indeed, they recommendM = 2
or M = 4 since a choice ofM = 1 leads to poor performance
for low SNRs. Thus, the procedure only approximates maximum
likelihood. Nevertheless, for proper choice ofM , numerical sim-
ulations show that the algorithm has very good statistical perfor-
mance.

Tretter [2] noticed that if the phase of the data could be cor-
rectly unwrapped then linear regression could be used to efficiently
estimate the frequency. To see this, consider the complex argument
(instantaneous phase) of each sample. The instantaneous phases,
�n, are instances of random variables�n where

�n = \Zn = 2�fcn+ � +�n (3)

and the�n are zero-mean, independent random variables express-
ing the phase error arising from the additive noise�n in (1) and
bounded between�� and�. The�n are approximately normal
with variance2�2=b2 when� � b. Therefore, given the linear na-
ture of (3), we should be able to perform linear regression on the
phases to obtain very accurate estimates off . However, the ob-
served phases are calculated using an arctangent operation which
contains a branch cut, usually at��. That is, they are calculated
modulo2�. In order to perform linear regression, we must per-
form phase unwrapping. To each�� < �n 6 �, we associate
an integersn to construct the unwrapped phase��n = �n +2�sn.
Linear regression is then performed on the��n. Although not origi-
nally expressed in terms of phase unwrapping or linear regression,
Kay [6] proposes a scheme in which we set��1 = �1 and then
construct the unwrapped phase by setting��n = ��n�1+\znz

y
n�1

for eachn = 2; 3; : : : ; N in turn, wherey denotes the complex
conjugate. Other methods, such as numerical integration of the
phase derivative [7, 8] have been proposed, but they require more
computation.

The weakness of the linear regression method of Tretter lies
in the fact that phase unwrapping errors can cause relatively large
errors in the frequency estimate, in addition to those caused by the
phase noise. For low SNRs, the errors due to phase unwrapping
become appreciable and the method becomes statistically ineffi-
cient.

4. LATTICE REDUCTION AND THE NEAREST
LATTICE POINT PROBLEM

The problem of finding short vectors and nearest points in a lattice
is important in algorithmic number theory. A(point) latticein Rm

is an additive subgroup ofRm . A lattice is any set which can be
expressed


 = fa1b1 + a2b2 + � � � + adbd j a1; a2; : : : ; ad 2 Zg

whereB = fb1;b2; : : : ;bdg ared linearly independent vectors
in Rm , m > d. We say that
 hasrank d and thatB is abasisof

. Any unimodular transformation of the basis is also a basis of
the same lattice.

Of all the possible vectors in a lattice
, we may want to
find the shortest non-zero vector,u, so thatkvk > kuk for all
v 2 
 n f0g and for some choice of normk�k. The problem is in-
teresting from the computational point of view because it has been
shown that this problem isNP-complete when thesup-norm is
used. The problem is also closely related to the process of finding
a canonical basis from any given basis, a process which is called
lattice reduction, especially when the canonical or reduced basis
consists of short or shortest vectors in some sense.

Although the problem of finding the shortest vector is appar-
ently infeasible, the algorithm of Lenstra, Lenstra & Lov´asz [5],
known as the LLL algorithm, is able to find almost shortest vec-
tors in a reasonable amount of time. The algorithm calculates a
Lovász-reducedbasis from a given basis of a lattice
. An impor-
tant property of the basis is that, for all non-zerov 2 
, kb1k

2
2 6

2d�1 kvk22, whereb1 is the shortest vector in the reduced basis
andk�k2 denotes the Euclidean norm. The LLL algorithm is able
to construct a Lov´asz-reduced basis in O

�
md2(d+ log �)

�
arith-

metic operations, where� is the ratio of the longest vector in the
input basis to the shortest vector in
.

A similar question to the shortest vector question is how to
find the closest lattice point to another given point. That is, given
a pointx 2 Rm , how do we go about finding a lattice pointu 2 

such thatkx� vk > kx� uk for all v 2 
? Again, the problem
appears likely to be computationally infeasible. However, building
on the LLL algorithm, Babai [4] proposed an algorithm which is
able to find an almost closest lattice point in reasonable time, in
that it finds a pointb 2 
 such that, for all non-zerov 2 
,

kb� xk22 6 2d kv� xk22 : (4)

The number of arithmetic operations required for Babai’s exten-
sion to the LLL algorithm does not increase its order.

5. FREQUENCY ESTIMATION AS A NEAREST
LATTICE POINT PROBLEM

We now consider how the problem of maximum likelihood fre-
quency estimation can be interpreted as a nearest lattice point prob-
lem. Consider the function

 (x1; x2; : : : ; xN�1) =

�����AN +

N�1X
n=1

Ane
i2�xn

�����
2

:

Rewriting�(f) so that

�(f) =

�����AN +

N�1X
n=1

Ane
i[2�f(N�n)+(�n��N )]

�����



and abusing notation slightly by expressing as a function of a
column vector, we can quickly confirm that

�(f)2 =  (ft+ Æ); (5)

where

t = (N � 1; N � 2; : : : ; 1)T ;

Æ =
1

2�
(�1 � �N ; �2 � �N ; : : : ; �N�1 � �N )

T :

Now,  is periodic in each of its arguments with period1.
Assume hereafter thatAn > 0, n = 1; 2; : : : ; N (this will be
true with probability1 whenb > 0). We can show that attains
its global maxima on each element ofZN�1 and nowhere else,
nor does it have any local maxima (see [9] for a proof in the case
N = 3).

Therefore, (5) implies that the periodogram can be interpreted
as the value of along the lineft+Æ. As we shall see, near points
in the integer latticeZN�1,  behaves very much like a distance
to that lattice point. Thus, in the case of high SNR, the value of 
along the line is maximised at its closest approach, in a sense we
will make clear, to a lattice point.

We can rewrite so that

 (x1; x2; : : : ; xN�1) = A2
N

+

N�1X
j=1

AjAN cos 2�xj +

N�1X
j=1

N�1X
k=1

AjAkcos(2�(xj � xk)):

Taking a Taylor series expansion to second order aboutxn = 0,
n = 1; 2; : : : ; N � 1, we then have

 (x1; x2; : : : ; xN�1) � p(x1; x2; : : : ; xN�1) (6)

= A2
N +

N�1X
j=1

AjAN

�
1� 2�2x2j

�

+
N�1X
j=1

N�1X
k=1

AjAk

�
1� 2�2(xj � xk)

2�:

We can expressp in matrix notation asp(x) = ATA�2�2xTMx,
where we have expressed theAn andxn as column vectors,A and
x, in RN andRN�1 , respectively,

M =

0
BBB@
A1S �A2

1 �A1A2 � � � �A1AN�1

�A1A2 A2S �A2
2 � � � �A2AN�1

...
...

. . .
...

�A1AN�1 �A2AN�1 � � � AN�1S �A2
N�1

1
CCCA

andS = A1 + A2 + � � � + AN . Noticing thatM is a positive
definite matrix, we have by Cholesky decomposition thatM =
RTR whereR consists of the firstN � 1 columns of

R
� =

�
I�

D11TDT

1DDT1T

�
D

whereD = diag(A
1

2

1 ; A
1

2

2 ; : : : ; A
1

2

N), I is theN � N identity
matrix and1 is the column vector of dimensionN consisting of
unit elements.

Now, consider maximisingp(ft� y) over f for somey 2
R
N�1 . The maximum is attained when

f =
tTMy

tTMt
: (7)

We then find that

max
f2R

p(ft� y) = y
T
R
T
T
T
TRy = kTRyk22

whereT is the projection matrix

T = I�
RttTRT

tTRTRt
:

Let us again consider the approximation of by p in (6), es-
pecially with regard to approximating the periodogram using the
identity (5). When there is no noise, the lineft + Æ runs through
an integer point, attaining its maximum at that point. This is be-
cause, in the noiseless case, the vectorÆ has the formÆ = tfc+k
where thekn (of k), n = 1; 2; : : : ; N � 1 are integers induced
by the branch cut in the arctangent. The maximum is attained not
only atf = fc but at all pointsf = fc +Z, as we expect. When
noise is added but the SNR is high, we expect that the lineft+ Æ

would not run through an integer point but would pass very close
by and would attain its maximum in that vicinity. Therefore, it
is reasonable to use the approximation (6) at that point. A good
estimate offc should be obtained using

f̂ = arg max
k2ZN�1

max
f2R

p(ft+ Æ � k):

The innermost maximisation is effected for any given value ofk in
the way discussed above. The maximisation problem is so reduced
to finding the integer pointk� such that

k
� = arg min

k2ZN�1
kTR(k� Æ)k22 : (8)

Rather than minimising over the integer lattice, we could equiva-
lently consider minimising over the lattice

� = TRZ
N�1; (9)

the lattice constructed from the columns ofTR. We have

min
k2ZN�1

kTR(k� Æ)k22 = min
u2�

ku� vk22 ;

where

v = TRÆ: (10)

In this way, we have approximated the maximisation of the pe-
riodogram by converting the problem into a nearest lattice point
problem.

We make two further observations. Firstly, the rank of the
lattice� is N � 2 sinceTRt = 0. Therefore, a basis of� can
be constructed from the firstN � 2 columns ofTR. Secondly,
the process of finding thek� corresponding to the nearest integer
point can be interpreted as the unwrapping of the phase of the data.
The unwrapped phase��n can be obtained by calculating��n =
�n+2�k

�
n,n = 1; 2; : : : ; N�1, with��N = �N . Equivalently, we

have approximated the frequency estimation problem as a problem
of optimising over all possible phase unwrappings.



6. NUMERICAL RESULTS

In this section, we examine the performance of an algorithm based
on the nearest lattice point construction developed in the previous
section. The algorithm, which we call thenearby lattice point fre-
quency estimator(NLPFE), calculates an frequency estimate from
the input data in a way we now describe. Firstly, we calculate the
basis of� according to (9) andv from (10). We find a nearby
lattice pointu 2 � to v using Babai’s algorithm. Although we
cannot be guaranteed that the lattice pointu is the closest, the
bound (4) suggests that the closest point will be found when the
SNR is high. Using an integer pointk� relatingu andTR, we
calculate the estimatêf using (7).
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Figure 1: Comparison of experimental mean square error for the
AMLFE, NLPFE & LRFE against the Cram´er-Rao bound. (Key:
— CRLB,
 AMFLE, � NLPFE,4 LRFE.)

Figure 1 shows the experimental mean square error obtained
for N = 24 from the approximate maximum likelihood frequency
estimator (AMLFE) of Rife & Boorstyn which attempts to max-
imise the periodogram, the nearby lattice point frequency estima-
tor (NLPFE) and the linear regression frequency estimator (LRFE)
proposed by Tretter using Kay’s phase unwrapping technique. All
are plotted against the Cram´er-Rao lower bound. The experimental
mean square errors were each calculated from at least1 000 trials
for each value of SNR. For each trial, the frequencyfc was chosen
in a pseudo-random fashion from a uniform distribution between
�0:5 and0:5. Similarly, the initial phase� was chosen between
�� and�. The square error for each trial was calculated modulo1

as(f̂ � fc � bf � fce)
2, whereb�e represents the nearest integer

function.
The results of Figure 1 show that the approximate maximum

likelihood technique of Rife & Boorstyn performs best, closely ap-
proaching the lower bound for SNRs as low as0 dB. However, we
see that the nearby lattice point procedure produces quite good re-
sults also, approaching the lower bound at SNRs as low as5 dB.
On the other hand, the linear regression technique using Kay’s
phase unwrapping fails to approach the lower bound at any SNR.
The problem is caused by phase unwrapping errors when the fre-
quency is close to0:5 or�0:5. In these cases, small errors in the
instantaneous phase can then lead to large variations in the value
of \znzyn. We could alleviate the problem by bounding the fre-

quencies away from these troublesome values.
Of course, the NLPFE is of very little practical use. In the

worst case, Babai’s algorithm requiresO
�
N4
�

arithmetic opera-
tions to compute the nearby lattice point which we use to unwrap
the phase (the number of operations required on average is un-
known to the author).

7. CONCLUDING REMARKS

In this paper, we presented an interpretation of the maximum like-
lihood estimation of frequency as a nearest lattice point problem.
We showed that the nearest lattice point can be interpreted as a
best phase unwrapping of the input data, in a certain sense. Fur-
thermore, we presented an algorithm, based on Babai’s nearby lat-
tice point algorithm, for estimating frequency. We showed that the
algorithm was able to estimate the frequency efficiently for mod-
erately low SNR (> 5 dB) for data sets of24 points.

However, while the algorithm presented proved to be compu-
tationally inefficient for the signal model examined here, the un-
derlying approach may yield algorithms which are better matched
to related problems. For example, the nearest lattice point interpre-
tation can be extended to frequency estimation in which the sam-
ples are not uniformly spaced, to frequency estimation in multi-
dimensional data and perhaps to the estimation of parameters in
polynomial-phase signals.
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