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ABSTRACT amount of computation. One such algorithm has been formulated
In this paper, we examine the relationship between frequency esti-Py Babai [4], d,rawing on the lattice reduction algorithm of Lenstra,
mation and phase unwrapping and a problem in algorithmic num- Lenstra & Lo\ész [S].
ber theory known as the nearest lattice point problem. After briefly ~ Our aim in this paper is to demonstrate the similarity between
reviewing the theory of these three topics, we introduce an inter- the three problems and to apply Babai's algorithm to the frequency
pretation of the maximum likelihood frequency estimation prob- €stimation problem. We will show that this algorithm can be in-
lem as a nearest lattice point problem. We develop an algorithm terpreted as explicitly unwrapping the phase of the signal and per-
based on this approach and present numerical results to comparéorming a weighted linear regression on the result. We will demon-

its performance with other estimation techniques. We find that the Strate through numerical simulation that it can operate at reason-
algorithm has good powers of estimation. ably low SNRs. However, our algorithm is not intended to be

a practical replacement to the other algorithms, but rather serves
to illustrate the connection between the two seemingly disparate

1. INTRODUCTION practices of lattice reduction and frequency estimation.

The purpose of this paper is to elucidate the connection between

the problem of frequency estimation and its solution by maximisa- 2. SIGNAL MODEL

tion of the periodogram and by methods of phase unwrapping and

the number theoretic problem of determining the nearest point in aWe will assume a record of complex data of lengfftontaining a

lattice to a given point with respect to a norm. constant amplitude cisoid in additive white Gaussian noise. Each
The frequency estimation problem, by which we mean the es- datumz,,, n = 1,2,..., N is an instance of a complex random

timation of the frequency of a single tone in noisy, sampled data, is variableZ,, where

one of the core studies in signal processing. It has applications in

radar, sonar, telecommunications and medicine. In their paper [1], Zy = bexp[i(2mfen + 0)] + En, )

Rife & Boorstyn proposed a model for the problem in which com-

plex data is used, containing a cisoid corrupted by additive white b, f. and@ are parameters representing the amplitude, frequency

complex Gaussian noise. They found that the maximum likeli- and phase of the signal. THg, are independent, identically-

hood solution to the problem is obtained through maximisation of distributed complex normal random variables with variamte

the periodogram of the sampled data. For convenience, we writd,, = |z,| and¢, = Zz, to rep-
Although the amount of computational effort which must be resent the instantaneous amplitude and phase, respectively, of the

expended to maximise the periodogram is not too great, researcrsignal.

has been conducted on algorithms which can estimate frequency

nearly as well but with less effort. Tretter [2] proposed using 3. THE PERIODOGRAM AND PHASE UNWRAPPING
the unwrapped phase of a signal to perform frequency estima-

tion. He showed that linear regression can be performed on the uni¢. ¢ Boorstyn [1] showed that, wheh f. andé are unknown
wrapped phases, yielding an accurate estimate of frequency wherarameters, maximum likelihood estimates can be found by max-

the signal-to-noise ratio (SNR) is sufficiently high. Simple phase imising the periodogram of the data, it being defined as
unwrapping and linear regression can both be performed more

quickly than the maximum likelihood technique for sufficiently

large data sets. C(f) =
A problem in algorithmic number theory is the determina-

tion of the nearest element of a point lattice to any other given

point according to a prescribed norm. It has been conjectured [3] The maximum likelihood estimate fgfis

that this problem is computationally infeasible under some con- .

ditions. Therefore, there is some interest in discovering ways of f=arg max ((f) @)

finding a provably almost-nearest lattice point with only a modest —2<fs3

N
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From a computational point of view, itis notimmediately clear
how we should go about obtaining the maximum likelihood esti-

mate. Rife & Boorstyn suggest a two-step approach. In the first
step, we compute the Fast Fourier Transform (FFT) of the data,

zero-padded to twice or four times its original length (which is as-

4. LATTICE REDUCTION AND THE NEAREST
LATTICE POINT PROBLEM

The problem of finding short vectors and nearest points in a lattice
is important in algorithmic number theory. (foint) latticein R™

sumed to be a power of two). This makes available to us values ofis an additive subgroup @&™ . A lattice is any set which can be

¢(fyatfn =n/(MN),n=0,1,...,MN — 1 whereM = 2

or M = 4 is the factor by which the original record has been zero-
padded. In the second step, we choose that ifidrich that the
absolute value of the FFT of the data is maximised, aiWe then

expressed
Q= {a1b1 + asbs + -+ + agbyg | ai,as,..
whereB = {bi,bs,..

.,adEZ}

., bg} ared linearly independent vectors

refine the estimate by executing a gradient ascent method, such ag ™ 1, > d. We say thaf hasrank d and thatB is abasisof

the secant method, frorfy. We terminate the method when the

difference ¢, between successive refinements in the estimate is ap-

preciably less than the CramRao bound, which is to say that

30>
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Rife & Boorstyn do not prove that this procedure generates
an estimate which satisfies (2). Indeed, they recomnigne: 2
or M = 4 since a choice ofif = 1 leads to poor performance
for low SNRs. Thus, the procedure only approximates maximum
likelihood. Nevertheless, for proper choice /f, numerical sim-
ulations show that the algorithm has very good statistical perfor-
mance.

Tretter [2] noticed that if the phase of the data could be cor-

rectly unwrapped then linear regression could be used to efficientlyzdfl
estimate the frequency. To see this, consider the complex argumen

(instantaneous phase) of each sample. The instantaneous phas
¢n, are instances of random variabfes where

B, =LZn =21fen+0+ A, 3)

Q. Any unimodular transformation of the basis is also a basis of
the same lattice.

Of all the possible vectors in a lattic®, we may want to
find the shortest non-zero vectar, so that||v|| > ||u]| for all
v € Q\ {0} and for some choice of norif||. The problem is in-
teresting from the computational point of view because it has been
shown that this problem i3tJ3-complete when theup-norm is
used. The problem is also closely related to the process of finding
a canonical basis from any given basis, a process which is called
lattice reduction especially when the canonical or reduced basis
consists of short or shortest vectors in some sense.

Although the problem of finding the shortest vector is appar-
ently infeasible, the algorithm of Lenstra, Lenstra & lase'[5],
known as the LLL algorithm, is able to find almost shortest vec-
tors in a reasonable amount of time. The algorithm calculates a
Lovasz-reducedbasis from a given basis of a latti€e An impor-
tant property of the basis is that, for all non-zer& €, ||b1||§ <
llv]l5, whereb; is the shortest vector in the reduced basis
151nd||-||2 denotes the Euclidean norm. The LLL algorithm is able

G construct a Lossz-reduced basis in(@d?(d + log p)) arith-

metic operations, wherg s the ratio of the longest vector in the
input basis to the shortest vector(in

A similar question to the shortest vector question is how to
find the closest lattice point to another given point. That is, given
a pointx € R™, how do we go about finding a lattice poiate 2

and theA,, are zero-mean, independent random variables expresssuch that|x — v|| > ||x — u| for all v € Q? Again, the problem

ing the phase error arising from the additive ndisein (1) and
bounded betweerm andw. The A,, are approximately normal
with variance2o” /b”> wheno < b. Therefore, given the linear na-

appears likely to be computationally infeasible. However, building
on the LLL algorithm, Babai [4] proposed an algorithm which is
able to find an almost closest lattice point in reasonable time, in

ture of (3), we should be able to perform linear regression on the that it finds a poinb € Q such that, for all non-zero € Q,

phases to obtain very accurate estimateg.oHowever, the ob-

served phases are calculated using an arctangent operation which

contains a branch cut, usually #itr. That is, they are calculated
modulo 2. In order to perform linear regression, we must per-
form phase unwrapping To each—n < ¢, < m, we associate
an integers,, to construct the unwrapped phagg = ¢, + 27s,,.
Linear regression is then performed on ¢e Although not origi-

nally expressed in terms of phase unwrapping or linear regression,

Kay [6] proposes a scheme in which we ggt = ¢; and then
construct the unwrapped phase by settig= ¢;,_; + Aznzjl,l
for eachn = 2,3,..., N in turn, wheret denotes the complex

conjugate. Other methods, such as numerical integration of the
phase derivative [7, 8] have been proposed, but they require more

computation.

The weakness of the linear regression method of Tretter lies
in the fact that phase unwrapping errors can cause relatively 'argeRewritingg( )

2 d 2
b —x[l; <2%[lv —x|.

(4)

The number of arithmetic operations required for Babai's exten-
sion to the LLL algorithm does not increase its order.

5. FREQUENCY ESTIMATION AS A NEAREST
LATTICE POINT PROBLEM

We now consider how the problem of maximum likelihood fre-
guency estimation can be interpreted as a nearest lattice point prob-
lem. Consider the function

™M

errors in the frequency estimate, in addition to those caused by the

phase noise. For low SNRs, the errors due to phase unwrapping
become appreciable and the method becomes statistically ineffi-

cient.

N—-1
¢(-T1,.T2, N ,xN,l) = |An + Z Anez27rzn
n=1
so that
N-1
() = |An + Y Aper IV =mHn=on)]
n=1




and abusing notation slightly by expressiigas a function of a
column vector, we can quickly confirm that

C()* = v(ft +8), ®)
where
t=(N-1,N—-2,...,1)7,

0= %(¢1—¢N,¢2—¢N:~--:¢N—l_¢N)T'

Now, v is periodic in each of its arguments with periad
Assume hereafter that,, > 0, n = 1,2,..., N (this will be
true with probabilityl whend > 0). We can show that attains
its global maxima on each element #f' ' and nowhere else,

nor does it have any local maxima (see [9] for a proof in the case

N =3).

Now, consider maximising(ft — y) over f for somey €
RV =1, The maximum is attained when

. tTMy

f= tTMt

(7)
We then find that

?gé(p(ft —y)= yTRTTTTRy = ||TRY||;

where'T is the projection matrix

RttTRT

T=1I- F"——.
tTRTRt

Let us again consider the approximationoby p in (6), es-
pecially with regard to approximating the periodogram using the

Therefore, (5) implies that the periodogram can be interpreted /dentity (5). When there is no noise, the liie + 4 runs through

as the value of) along the lineft + 4. As we shall see, near points
in the integer latticeZ¥ ~1, ) behaves very much like a distance
to that lattice point. Thus, in the case of high SNR, the valug of
along the line is maximised at its closest approach, in a sense w

will make clear, to a lattice point.
We can rewrita) so that
¢($17$27 cee 7$N—1) = A?V
N-1 N—-1N-1
+ Z AjAn cos 2Tz + Z Z AjApcos(2m(z; — x1)).

j=1 j=1 k=1

Taking a Taylor series expansion to second order albgut 0,

n=12,...,N —1,wethen have

¢($1:$2:---;$N—1) %p(:l;’l,:l;'g,...,x]v_l) (6)
N-1

= A;V —+ Z AjAN(]. — 27‘(21"]2-)

j=1

=z

—1N-1
+ AJAk [1 — 27r2(1‘j — l‘k)z]

1 1

2
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We can expresgsin matrix notation ag(x) = AT A —2rxT Mx,
where we have expressed thg andz,, as column vectorsA and
x, inRY andRY !, respectively,

A S — A? —A1A> —A1AN_
—A1A> AyS — A} —A2AN_1
M= . . .
—A1AN_1 —A2AN An_1S — A%,

andS = A; + A> + .-+ 4+ Anx. Noticing thatM is a positive
definite matrix, we have by Cholesky decomposition tNat=
RTR whereR consists of the firslV — 1 columns of

D117D7T
R'=(I-——_ D
< 1DDT1T)

1 1 1
whereD = diag(A?,AZ,...,A%), Iisthe N x N identity
matrix and1l is the column vector of dimensioN consisting of
unit elements.

an integer point, attaining its maximum at that point. This is be-
cause, in the noiseless case, the vedtoas the formd = tf. + k
where thek,, (of k), n = 1,2,..., N — 1 are integers induced

epy the branch cut in the arctangent. The maximum is attained not

only at f = f. but at all pointsf = f. + Z, as we expect. When
noise is added but the SNR is high, we expect that thefling §
would not run through an integer point but would pass very close
by and would attain its maximum in that vicinity. Therefore, it
is reasonable to use the approximation (6) at that point. A good
estimate off. should be obtained using

= t+06 —k).
f=arg  Dnax lr;lgnggp(f + )

The innermost maximisation is effected for any given valuk of

the way discussed above. The maximisation problem is so reduced
to finding the integer poirk™ such that

k* =arg min | TR(k—d)|>. (8)
kezN -1 :

Rather than minimising over the integer lattice, we could equiva-
lently consider minimising over the lattice

A =TRzZN ™, 9)
the lattice constructed from the columnsDR.. We have

. 2 . _ 2
Lnin ITR(k — &)ll; = min flu—vl;,

where
v = TRS. (20)

In this way, we have approximated the maximisation of the pe-
riodogram by converting the problem into a nearest lattice point
problem.

We make two further observations. Firstly, the rank of the
lattice A is N — 2 sinceTRt = 0. Therefore, a basis of can
be constructed from the firg¢ — 2 columns of TR. Secondly,
the process of finding thke* corresponding to the nearest integer
point can be interpreted as the unwrapping of the phase of the data.
The unwrapped phasg;, can be obtained by calculating, =
on+2mky,m =1,2,..., N—1, with ¢y = ¢n. Equivalently, we
have approximated the frequency estimation problem as a problem
of optimising over all possible phase unwrappings.



6. NUMERICAL RESULTS guencies away from these troublesome values.

Of course, the NLPFE is of very little practical use. In the
In this section, we examine the performance of an algorithm basedworst case, Babai's algorithm requir@N‘*) arithmetic opera-
on the nearest lattice point construction developed in the previoustions to compute the nearby lattice point which we use to unwrap
section. The algorithm, which we call tinearby lattice point fre- the phase (the number of operations required on average is un-
quency estimatofNLPFE), calculates an frequency estimate from known to the author).
the input data in a way we now describe. Firstly, we calculate the
basis of A according to (9) and from (10). We find a nearby
lattice pointu € A to v using Babai’'s algorithm. Although we

cannot be guaranteed that the lattice painis the closest, the | this paper, we presented an interpretation of the maximum like-
bound (4) suggests that the closest point will be found when the |ihgod estimation of frequency as a nearest lattice point problem.
SNR is high. Using an integer poiit" relatingu and TR, we We showed that the nearest lattice point can be interpreted as a
calculate the estimatgusing (7). best phase unwrapping of the input data, in a certain sense. Fur-
thermore, we presented an algorithm, based on Babai’s nearby lat-

7. CONCLUDING REMARKS

10~1 PV TTTVYN tice point algorithm, for estimating frequency. We showed that the
o RS baa,, algorithm was able to estimate the frequency efficiently for mod-
102 ““DDOD “AMAMM 1 erately low SNR ¢ 5 dB) for data sets 024 points.
E “AAAAMAM However, while the algorithm presented proved to be compu-
. 1073 o7 BRLLL jny tationally inefficient for the signal model examined here, the un-
o o AA . . . .
s, ° 1 derlying approach may yield algorithms which are better matched
$ 10 to related problems. For example, the nearest lattice point interpre-
§ 10-5 ] tation can be extended to frequency estimation in which the sam-
=3 ples are not uniformly spaced, to frequency estimation in multi-
c 109-6 ] dimensional data and perhaps to the estimation of parameters in
é polynomial-phase signals.
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