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ABSTRACT

A hierarchical system for audio classi�cation and retrieval
based on audio content analysis is presented in this pa-
per. The system consists of three stages. The �rst stage
is called the coarse-level audio classi�cation and segmenta-
tion, where audio recordings are classi�ed and segmented
into speech, music, several types of environmental sounds,
and silence, based on morphological and statistical analy-
sis of temporal curves of short-time features of audio sig-
nals. In the second stage, environmental sounds are further
classi�ed into �ner classes such as applause, rain, birds'
sound, etc. This �ne-level classi�cation is based on time-
frequency analysis of audio signals and use of the hidden
Markov model (HMM) for classi�cation. In the third stage,
the query-by-example audio retrieval is implemented where
similar sounds can be found according to an input sample
audio. It is shown that the proposed system has achieved
an accuracy higher than 90% for coarse-level audio clas-
si�cation. Examples of audio �ne classi�cation and audio
retrieval are also provided.

1. INTRODUCTION

Audio, which includes voice, music, and various kinds of
environmental sounds, is an important type of media, and
also a signi�cant part of audiovisual data. As there are
more and more digital audio databases in place at present,
people start to realize the importance of audio database
management relying on audio content analysis.

Content-based audio classi�cation and retrieval have a wide
range of applications in the entertainment industry, audio
archiving management, commercial musical usage, surveil-
lance, etc. For example, it will be very helpful to be able
to search sound e�ects automatically from a very large au-
dio database in �lm postprocessing, which contains sounds
of explosion, windstorm, earthquake, animals, and so on.
There are also distributed audio libraries in the World Wide
Web, and content-based audio retrieval could be an ideal
approach for sound indexing and search. Furthermore, con-
tent analysis of audio is useful in audio-assisted video analy-
sis. Possible applications include video scene classi�cation,
automatic segmentation and indexing of raw audiovisual
recordings, and audiovisual database browsing.

Existing research on content-based audio data management
is very limited. There are in general three directions. One

direction is audio segmentation and classi�cation. One ba-
sic problem is speech/music discrimination. Further clas-
si�cation of audio may take other sounds into considera-
tion, as done in [1], where audio was classi�ed into \music",
\speech", and \others". The second direction is audio re-
trieval. One speci�c technique here is query-by-humming.
For generic audio retrieval, two approaches were presented
in [2] and [3], respectively. MFCC of audio signals were
taken as features, and a tree-structured classi�er was built
for retrieval in [2]. It turned out that MFCC do not work
well in di�erentiating audio timbres. In [3], statistical values
(means, variances, and autocorrelations) of several time-
and frequency-domain measurements were used to repre-
sent perceptual features such as loudness, brightness, band-
width, and pitch. This method is only suitable for sounds
with a single timbre. The third direction is audio analysis
for video indexing. In [4], audio analysis was applied to the
distinction of �ve kinds of video scenes.

Audio classi�cation and retrieval is an important and chal-
lenging research topic, while work in this area is still at a
preliminary stage. Our objective in this research is to build
a hierarchical system which consists of coarse-level and �ne-
level audio classi�cation and audio retrieval. There are sev-
eral distinguishing features of this system. First, we divide
the audio classi�cation task into two steps. In the coarse-
level step, speech, music, environmental audio, and silence
are separated. This classi�cation is generic and model-free.
Then, in the �ne-level step, more speci�c classes of natu-
ral and synthetic sounds are distinguished within each ba-
sic audio type. Second, compared with previous work, we
put more emphasis on the environmental audio, which is
often ignored in the past. Environmental sounds are an
important ingredient in audio recordings, and their analy-
sis is inevitable in many real applications. Third, the au-
dio retrieval is achieved based on audio classi�cation re-
sults, thus obtaining semantic meanings and better relia-
bility. Irrelevant or confusing results, as often appearing
in image or audio retrieval systems, are avoided by this
way. Finally, we investigate physical and perceptual fea-
tures of di�erent classes of audio, and apply signal pro-
cessing techniques (including morphological and statistical
analysis methods, heuristic method, clustering method, hid-
den Markov method, etc.) uniquely to the representation
and classi�cation of extracted features. The framework of
the proposed system is shown in Figure 1.

The paper is organized as follows. In Section 2, audio fea-



Figure 1: A hierarchical system for content-based audio
classi�cation and retrieval.

tures which are important for classi�cation and retrieval are
introduced. The procedures for coarse-level audio classi�-
cation and segmentation, and those for the �ne-level audio
classi�cation and audio retrieval are described in Sections
3 and 4, respectively. Experimental results are shown in
Section 5, and summarizing remarks are given in Section 6.

2. AUDIO FEATURES FOR CLASSIFICATION

AND RETRIEVAL

There are two types of audio features: physical features and
perceptual features. Physical features refer to mathemati-
cal measurements computed directly from the sound wave,
such as the energy function, the spectrum, and the funda-
mental frequency. Perceptual features are subjective terms
which are related to the perception of sounds by human
beings, including loudness, pitch, timbre, and rhythm. For
the purpose of coarse-level classi�cation, we have used tem-
poral curves of three kinds of short-time physical features,
i.e., the energy function, the average zero-crossing rate, and
the fundamental frequency. For the �ne-level classi�cation,
one of our most important tasks is to build physical and
mathematical models for the perceptual features with which
human beings distinguish di�erent classes of sounds. In this
work, we consider two kinds of features: timbre and rhythm.

2.1. Physical Features

(1) Short-time Energy Function
The short-time energy of an audio signal is de�ned as

En =
1

N

X
m

[x(m)w(n�m)]2; (1)

where x(m) is the discrete time audio signal, n is time index
of the short-time energy, and w(m) is a rectangle window
of length N . It provides a convenient representation of the
amplitude variation over time. For speech signals, it is a
basis for distinguishing voiced speech components from un-
voiced speech components, as the energy function values for
unvoiced components are signi�cantly smaller than those of
the voiced components. The energy function can also be
used as the measurement to distinguish silence when the
SNR is high.

(2) Short-time Average Zero-Crossing Rate (ZCR)
In discrete-time signals, a zero-crossing is said to occur if
successive samples have di�erent signs. The short-time av-
erage zero-crossing rate, as de�ned below, gives rough esti-
mates of spectral properties of audio signals.
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where

sgn[x(n)] =

�
1; x(n) � 0;
�1; x(n) < 0;

and w(m) is a rectangle window. It is another measure-
ment to di�erentiate voiced speech components from un-
voiced speech components, as the voiced components have
much smaller ZCR values than the unvoiced components.
Compared to that of speech, the ZCR curve of music has
a remarkablely lower variance and average amplitude. The
environmental audio of various origins can be briey classi-
�ed according to the di�erences in ZCR curve properties.

(3) Short-time Fundamental Frequency (FuF)
We de�ne the short-time fundamental frequency to reveal
harmonic properties of audio signals.

Fn = fufflog jFFT (x(m)w(n�m))jg; (3)

where w(m) is the Hanning window. The operator fuff�g
is de�ned as such that when the sound is harmonic, Fn is
equal to the fundamental frequency estimated from the log-
arithmic spectrum; and when the sound is non-harmonic,
Fn is set to zero. Sounds from most musical instruments
are harmonic. In speech, voiced components are harmonic
while unvoiced components are non-harmonic. Most envi-
ronmental sounds are non-harmonic except that there are
some examples which are harmonic and stable, or harmonic
and non-harmonic mixed.

2.2. Perceptual Features

(1) Timbre
Timbre is generally de�ned as \the quality which allows one
to tell the di�erence between sounds of the same level and
loudness when made by di�erent musical instruments or
voices". The problem of building physical models for tim-
bre perception has been investigated for a long time in psy-
chology and music analysis without de�nite answers. Nev-
ertheless, we may get the conclusion from existing results
that the temporal evolution of spectrum of audio signals ac-
counts largely for timbre perception. Here, we extend tim-
bre from a term originally used for harmonic sound (music
and voice) to the perception of environmental sound, and
analyze it on the time-frequency representation of audio
signals. We consider timbre as the most important feature
in di�erentiating di�erent classes of environmental sounds,
and to build a model properly for timbre perception based
on the spectrogram is one major problem in our research.

(2) Rhythm
Rhythm is a term originally de�ned for speech and music.
It is the quality of happening at regular periods of time.
Here, we extend it to environmental sounds to represent
the change pattern of timbres in a sound clip. Rhythm is a



signi�cant feature in the perception of sounds like footstep,
clock tick, telegraph machine, pager, door knock, etc.

3. COARSE-LEVEL CLASSIFICATION AND

SEGMENTATION OF AUDIO

For on-line segmentation and classi�cation of audio record-
ings, the short-time energy function, short-time average
zero-crossing rate, and short-time fundamental frequency
are computed on the y with incoming audio data. When-
ever there is an abrupt change detected in any of these three
features, a segment boundary is set. Each segment is then
classi�ed into one of the basic audio types according to a
rule-based heuristic procedure. The procedure includes the
following steps:

(1) Separating Silence
We de�ne \silence" to be a segment of imperceptible audio,
including unnoticeable noise and very short clicks. We use
both energy and ZCR measures to detect silence. If the
short-time energy function is continuously lower than cer-
tain set of thresholds (except for short, sparse clicks) or if
most short-time zero-crossing rates are lower than certain
set of thresholds, then the segment is indexed as \silence".

(2) Separating Environmental Sounds with Special Features
The short-time fundamental frequency curve is checked. If
most parts of the temporal curve are harmonic, and the
fundamental frequency is �xed at one particular value, then
the segment is indexed as \harmonic and unchanged". If
the fundamental frequency of a sound clip changes over time
but only with several values, it is indexed as \harmonic
and stable". This step is performed as a screening process
for harmonic environmental sounds, so that they will not
confuse the di�erentiation of music. It is also the basis of
�ne-level classi�cation of harmonic environmental audio.

(3) Distinguishing Music
Music is distinguished based on the zero-crossing rate and
the fundamental frequency properties. Four aspects are
checked, i.e., the degree of being harmonic, the degree of
the fundamental frequency concentration on certain values
during a period of time, the variance of zero-crossing rates,
and the range of the amplitude of the zero-crossing rates.
For each aspect, these is one empirical threshold set and a
decision value de�ned. The four decision values are aver-
aged with certain weights to derive a total probability of
the audio segment being music.

(4) Distinguishing Speech
Five aspects are checked to distinguish speech. The �rst one
is the compensative relation between amplitudes of ZCR
and energy curves. The second one is the shape of ZCR
curve. For speech, the ZCR curve has a stable and low
baseline with peaks above it. The third and fourth aspects
are the variance and the range of the amplitude of the ZCR
curve, respectively. And the �fth aspect is about the prop-
erty of the short-time fundamental frequency. A decision
value, which is a fraction between 0 and 1, is de�ned for
each of the aspects. The weighted average of these decision
values gives the possibility of the segment being speech.

(5) Classifying Other Environmental Sounds

The last step is to classify what is left into one type of the
non-harmonic environmental sounds: (a)\periodic or quasi-
periodic" when either the energy curve or the ZCR curve
has approximately periodic peaks; (b)\harmonic and non-
harmonic mixed" when the percentage of harmonic sound is
within a certain range; (c)\non-harmonic and stable" when
the frequency centroid is within a relatively small range
compared to the range of the frequency distribution; and
(d)\non-harmonic and irregular" when the segment does
not satisfy any of the above conditions.

Finally, a post-processing procedure is applied to reduce
possible segmentation errors. For more details of these pro-
cesses, we refer to [5].

4. FINE-LEVEL AUDIO CLASSIFICATION

AND AUDIO RETRIEVAL

The core of �ne-level audio classi�cation is to build hidden
Markov model (HMM) for each class of sounds. Currently,
two types of information are contained in HMM: timbre
and rhythm. Each kind of timbre is modeled as one state of
HMM, and represented with the Gaussian mixture density.
The rhythm information is denoted by transition and dura-
tion parameters in HMM. Once HMM parameters are set,
sound clips can be classi�ed into available classes by match-
ing to models of these classes. The processes are briey
introduced below, while more details can be found in [6].

(1) Feature Extraction
A key point in modeling timbre perception with HMM is to
extract feature vector from the short-time spectrum. Up to
now, we have used the most direct way to extract features
from the frequency distribution, i.e. to use the spectrum
coe�cients themselves. Taking 128-point FFT of audio sig-
nal, we obtain a feature vector of 65 dimensions (i.e., the
logarithm of amplitude spectrum at each frequency sample
between 0 and �) at each sampled time instant.

(2) Clustering
The feature vectors of one class of sounds are clustered
into several sets, with each set denoting one kind of tim-
bre, and modeled later by one state in HMM. We adopted
an adaptive sample set construction method for clustering
with some modi�cations. It works well for clustering feature
vectors. For example, the sound of dog bark is clustered into
three states: bark, intermission, and the transition period
in between.

(3) Building Model
The hidden Markov model with continuous observation den-
sities and explicit state duration densities [7] is used to
model each class of sound. We denote the complete pa-
rameter set of HMM as � = (A;B;D; �), with A for the
transition probability, B for observation density param-
eters, D for duration density parameters, and � for ini-
tial state distribution. A simpli�ed procedure is taken to
train the parameters. First, the parameters of observation
density, which takes the form of a Gaussian mixture, are
estimated for each state, respectively, through an ML it-
eration process. Then, the transition probability matrix
A and the duration density parameters are calculated sta-
tistically according to the state indexes of feature vectors



in the training set. The initial state distribution is set as
�i = 1=N; 1 � i � N , where N is the number of states.

(4) Classi�cation
Assume that there are K classes of sounds modeled with
parameter sets �i; 1 � i � K. For a piece of sound to
be classi�ed, feature vectors X = fx1;x2; : : : ;xT g are ex-
tracted. Then, the HMM likelihoods Pi(Xj�i); 1 � i � K,
are computed. Choose the class j which maximizes Pi, i.e.
j = argmaxfPi; 1 � i � Kg, and the sound is classi�ed
into this class.

(5) Audio Retrieval
HMM is built for each sound clip in the audio database
in the query-by-example audio retrieval. With an input
query sound, its feature vectors X = fx1;x2; : : : ;xT g are
extracted, and the possibilities P (Xj�i); 1 � i � L are
computed, where L is the number of sound clips in the
database and �i denotes the HMM parameter set for the
ith sound clip. A rank list of audio samples in terms of
similarity with the input query are obtained by comparing
values of P (Xj�i). The user may listen to one sound, and
be asked \want more like this?". As the database is orga-
nized based on audio classi�cation results, if he likes this
retrieved sound, the class to which this sound belongs can
be retrieved. Sounds within the class will be ordered ac-
cording to similarity with the query sound, and presented
to the user.

5. EXPERIMENTAL RESULTS

5.1. Audio Database and Coarse-level Classi�cation

We have built a generic audio database which includes about
1500 pieces of sound of various types to test the classi�ca-
tion and retrieval algorithms. We also collected dozens of
audio clips recorded from movies for testing the segmenta-
tion performances. The proposed coarse-level classi�cation
scheme achieves an accuracy rate of more than 90% with
this audio database. Misclassi�cation usually occurs in the
hybrid sound which contains more than one basic type of
audio. When testing with movie audio recordings, the seg-
mentation and classi�cation together can be achieved in real
time. The boundaries are set accurately and each segment
is properly classi�ed.

5.2. Example of Fine-level Classi�cation

For a brief test of the �ne-level classi�cation algorithm, we
built the HMM parameter set for ten classes of sounds, in-
cluding applause, birds' cry, dog bark, explosion, foot step,
laugh, rain, river ow, thunder, and windstorm. Feature
vectors extracted from 6-8 sound clips were used for build-
ing the model for each class. Then, �fty new sound clips
(with �ve pieces of sound in each class) were used to test the
classi�cation accuracy. It turned out that 41 out of the 50
sound clips were correctly classi�ed, achieving an accuracy
rate of over 80%. Misclassi�cation happened among classes
having perceptually similar sounds, such as applause, rain,
river ow, and windstorm.

5.3. Example of Audio Retrieval

In an experiment of audio retrieval, 100 pieces of sound from
15 classes were selected to form a small database, with the
HMM parameter set trained for each piece of sound. We
chose a sound clip of applause as the query sound, and
matched it to each of the 100 HMMs. The resulting top ten
sounds in the rank list belonged to the following classes:
no.1-5: applause; no.6: rain; no.7-9: applause; no.10: rain.
This result is reasonable, as the pouring rain and the ap-
plause by a crowd of people sometimes really sound alike.
For another example, a sound clip of plane taking o� was
used as the input query, and the top ten retrieved sounds
were: no.1-6: plane; no.7-10: rain. The only 6 pieces of
plane sound in the database were ranked at the �rst 6
places, while the next 4 were taken by sounds of large rain.

6. SUMMARY

A hierarchical system for audio classi�cation and retrieval
based on audio content analysis and modeling was presented
in this paper. The coarse-level classi�cation is generic and
model free, and achieved an accuracy rate of more than
90% tested with our audio database. For �ne-level classi�-
cation and audio retrieval, we focused on modeling environ-
mental sound with the hidden Markov model. Preliminary
experiments showed that accuracy rate of over 80% can
be achieved with the proposed �ne classi�cation method.
Results of audio retrieval also proved the HMM-based ap-
proach to be promising. Future work will be done to re�ne
the proposed system. First, we will enhance the coarse-level
classi�cation by taking hybrid-type sound and noisy sound
into consideration. Second, we will look for more e�ective
feature extraction method in the �ne-level classi�cation.
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