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ABSTRACT

A fast, degradation-free solution for the DCT block extraction prob-
lem is proposed. The problem is defined as extracting a DCT block
from a DCT compressed frame composed of DCT blocks. This
problem is encountered in both video/image manipulations in the
compressed domain and transcodecs, for example, converting from
MPEG to Motion JPEG. Traditionally, solutions involve using the
pixel domain manipulation or Chang’s algorithm with approxima-
tions. The new solution expands Chang’s algorithms, takes full
advantage of a fast DCT algorithm, and exploits characteristics of
the input DCT blocks without any approximation. The new DCT
block extraction achieves 70% performance improvement without
any degradation of image quality compared with the conventional
solutions.

1. INTRODUCTION

Image and video processing in the discrete cosine transformed
(DCT) compressed domain allows direct manipulation of the data
without decompression using the inverse discrete cosine transform
(IDCT) [1]. Before Chang,et al. proposed the technique, image
manipulation requires a) decompression of image/video data, b)
image/video processing in the pixel domain (IPPD), and c) recom-
pression of the resulting image/video data. Since image/video data
is usually both stored on media and transmitted in a compressed
form, image/video processing in the compressed domain (IPCD)
can improve performance. For example, IPCD shows significant
performance improvement for the block based linear pixel manip-
ulation [2, 3] and the inner-block pixel operations [4]. However,
total operations for IPCD can overwhelm ones for IPPD if pro-
cessing needs pixel manipulation over original block boundaries.
Specifically, this performance issues constitute aDCT block ex-
traction problem:

Given a16 � 16 pixel sized DCT block region built
from four DCT blocksP , Q, R, andS as shown in
Fig. 1, efficiently determineH(v; u) (a DCT block
arbitrarily located within the region) as a function
of the four DCT input blocks and the displacement
(v; u).

The solution of this problem is a key procedure for IPCD.
Typical situations where the problem is encountered includecom-
pressed domain inverse motion compensation[3, 5] andtranscod-
ing, e.g., a transcodec from MPEG to Motion JPEG [6, 7]. While

the problem has the traditional IPPD solution, Chang,et al. pro-
posed another scheme based on IPCD [1] that operates directly
on the input DCT blocks without decompression/recompression.
However, as we demonstrate in the next section, Chang’s algorithm
is computationally more expensive than the IPPD solution with a
fast DCT algorithm [8]-[16]. Although other researchers have pro-
posed various approximation techniques for Chang’s algorithm to
reduce the computational cost [5, 6, 7], these approximations nat-
urally induce degradation of image quality, and are not appropriate
especially for high-end use.

In this paper, we propose a new solution named FADEP (Fast
Algorithm for Dct block Extraction Problem) for the DCT block
extraction problem. Although FADEP is also based on Chang’s
algorithm, it takes full advantage of a fast DCT algorithm, and ex-
ploits characteristics of the input DCT blocks without any approx-
imation, resulting in less complexity than the IPPD solution. In
the inverse motion compensation equivalent computation, FADEP
achieves more than 70% performance improvement compared with
the IPPD solution without any degradation of image quality.

This paper consists of six sections. In Sec. 2, the high com-
plexity of conventional solutions are revealed. In Sec. 3, FADEP is
developed with a fast DCT algorithm selection discussed in Sec. 4.
The quantitative improvement of FADEP is then demonstrated in
Sec. 5, followed by conclusion in Sec. 6

2. CONVENTIONAL SOLUTIONS

The IPPD solution of the problem takes three steps: a) obtain orig-
inal pixel blocks,P , Q, R andS by decompression, b) extract
H(v;u) (pixel block), and c) convertH(v; u) into a corresponding
DCT block,H(v; u). The complexity for this solution is analyzed
as follows: LetT be the DCT operation matrix whose elements,
tk;i, are given by

tk;i =
c(k)

2
cos

(2i+ 1)k�

16
for k; i = 0; � � � ; 7 (1)

wherec(k) = 1=
p
2 for k = 0 and 1 otherwise. The 2-dimensional

(2-D) DCT ofH can be written as

H = DCT(H) = THT t; (2)

whereT t denotes a transposed matrix ofT . Note that the unitary
property,TT t = T tT = I whereI is an identity matrix, holds for



the DCT operation matrix given by Eq. (1). Now, let the compu-
tational complexity for8� 8 matrix multiplication be�MM , then
the complexity for Eq. (2) becomes2�MM . Since the complexities
of the respective IDCTs forP; � � � ; S are also given by2�MM , the
total complexity of this solution is estimated as10�MM .

On the other hand, Chang,et al. proposed a solution of the
problem based on IPCP [1]. According to their algorithm,H(v; u)
is given by

H(v; u) = W
t

1(v)P W 1(u) +W
t

1(v)Q W 0(u) +

W
t

0(v)R W 1(u) +W
t

0(v)S W 0(u) (3)

where �
W 0(u) = TW0(u)T

t

W 1(u) = TW1(u)T t
(4)

and

W0(u) =

�
0 Iu
0 0

�
; W1(u) =

�
0 0

I8�u 0

�
: (5)

Although Equation (3) has the complexity of8�MM , decom-
posing Eq. (3) into

F 0 = P W 1(u) +Q W 0(u); (6)

F 1 = R W 1(u) + S W 0(u); and (7)

H(v; u) = W
t

1(v)F 0 +W
t

0(v)F 1 (8)

can save two matrix multiplications, resulting in6�MM as its com-
plexity.

According to the above analysis, the Chang’s algorithm’s so-
lution can reduce the computational complexity to 60% of the one
based on IPPD. However, the IPPD solution performs more effi-
ciently if a fast DCT algorithm is introduced. IfTH or HT t in
Eq. (2) is computed using matrix multiplication, the multiplica-
tive complexity is calculated as64 � 8 = 512. On the other
hand, when Chen’s fast DCT algorithm is applied to the compu-
tation for example, the complexity becomes16 � 8 = 128, be-
cause their algorithm requires only 16 multiplications for a 1-D
pixel vector [9]. Thus, letting the complexity ofTH or HT t us-
ing a fast DCT algorithm be�DCT , we obtain the approximation
�DCT ' 1

4
�MM which gives the complexity of the IPPD solu-

tion as10�DCT ' 2:5�MM . This suggests that the IPPD solution
performs more than twice as efficiently as that based on Chang’s
algorithm.

3. NEW SOLUTION (FADEP)

2-D DCT blocks have a separable property that allows indepen-
dent handling of their row and column vectors. The row-column
approach together with a sub-block extraction needs less IDCT op-
eration than the IPPD solution. This is the basic idea of FADEP.

According to Eqs. (4), Equation (6) can be expanded to

F 0 = P TW1(u)T
t +Q TW0(u)T

t = ~F0T
t (9)

where
~F0 = P TW1(u) +Q TW0(u): (10)

Similarly, we can obtain from Eq. (7)

F1 = ~F1T
t; (11)

where
~F1 = R TW1(u) + S TW0(u): (12)

Substituting Eqs. (9) and (11) into Eq. (8) after the decomposition
of W

t

0(v) andW
t

1(v) gives

H(v;u) = TW t
1 (v)T

tF 0 + TW t
0 (v)T

tF 1 = TGT t (13)

where
G = W t

1 (v)T
t ~F0 +W t

0(v)T
t ~F1: (14)

Based on these modifications of Chang’s algorithm, FADEP is de-
rived as Eqs. (10), (12), (13), and (14). The complexity of FADEP
is less than the IPPD solution: since the complexity of each of
the equation is2�DCT , FADEP’s complexity is their sum8�DCT ,
2�DCT less than that of the IPPD solution.

Although FADEP performs more efficiently than the IPPD so-
lutions, the improvement is not significant. However two tech-
niques,pruned IDCTandscaled DCT, can further enhanceFADEP
performance. The former is applied to the partial IDCT component
or Eqs. (10), (12), and (14), while the latter to the backward DCT
component or Eq. (13). The pruned IDCT considers only a limited
number of low frequency elements as input, and is based onDCT
pruning [16]. Since a number of input elements should be spec-
ified in the pruned IDCT, additional quantities, rowL and clmL,
are introduced in the DCT block data structure. They represent
the lengths of row and column vectors in the block, respectively,
and are given by the maximum index of non-zero elements in the
vectors.

4. SELECTION OF FAST DCT ALGORITHMS

Several existing fast DCT algorithms [9]-[15] can implement the
scaled DCT and pruned IDCT required for FADEP’s backward
DCT and partial IDCT components. However, a flowgraph analy-
sis reveals that particular algorithms are better than others.

The flowgraphs of the algorithms consist of three parts: a) a 1st
stage butterfly, b) 2nd and further stages for even DCT coefficients
(Even part),and c) 2nd and further stages for odd DCT coefficients
(Odd part). If� and� are the numbers of multiplications and addi-
tions, respectively, the complexity of the algorithms when they are
applied to the scaled DCT is shown in Table 1. This table suggests
that Arai’s algorithm has the least complexity and is suitable for
the backward DCT component of FADEP

The flowgraph of the IDCT can be obtained by reversing the
direction of the DCT flowgraph. The pruned IDCT can thus be ob-
tained by pruning higher frequency input in the flowgraphs. The
number of operations (�,�) is summarized in Table 2 as a function
of a number of frequency input (arguments) for each IDCT algo-
rithm. This table clearly indicates that among the pruned IDCT al-
gorithms investigated, the pruned IDCT algorithm based on Hou’s
DCT algorithm [11] gives the least number of operations for all
numbers of input. Therefore, their algorithm is suitable for the
partial IDCT component of FADEP.

Combining the two fast DCT algorithms for FADEP, the re-
sulting flowgraph for a 1-D input vector isillustrated in Fig. 2.
In this figure, solid lines denote positive flows while dotted lines
represent flows negatively added (multiplied by�1), and values
are multiplied by the weight coefficients (Ci; � � � ; Ei) at the dot-
ted points (�). Note that FADEP consists of three components:
the partial IDCT, the backward DCT, and the final scaling. The
final scaling component includes all of the scaling operations used



in FADEP, and can be combined with the following quantizing
stage.

5. DEMONSTRATIONS

In order to demonstrate the quantitative improvement of FADEP
over the IPPD solution, we implemented the DCT block extrac-
tion module based on FADEP as well as the IPPD solution. The
performance is evaluated by measuring the CPU time of the DCT
block extraction module on a Sun Ultra SPARC machine running
SunOS 5.6.

One of the important characteristics of FADEP is that it works
more efficiently when the input DCT blocks are sparse. In order to
demonstrate this characteristic, the performance of the module for
artificially designed input DCT blocks was evaluated. Using a test
DCT block full of non-zero elements, the evaluation used modified
DCT blocks that are created by zeroing all of the elements whose
indices in the zigzag sequence is larger than a specified value. This
value,zigzag length, characterizes the sparseness of the input DCT
block. When the zigzag length is small, modified DCT blocks have
non-zero elements at their upper-left corner as shown by the inner
figure of Fig. 3. The figure shows the performance of FADEP for
DCT blocks as a function of the zigzag length. The performance
of the IPPD solution is independent of the sparseness of the input
DCT blocks. The FADEP performance is thus provided in the
form of the ratio of the CPU time for the IPPD solution to that
of FADEP. As shown in Fig. 3, FADEP performance improves as
the zigzag length decreases. FADEP also shows 18% performance
improvement even when all the elements in the input DCT block
are non-zero (the zigzag length at 64). This is explained by the
complexity analysis of Sec. 3. Figure 4 shows the performance of
FADEP for the input DCT blocks composed of a certain number
of row or column vectors (see inner figure). Because the FADEP
module has symmetric structure in terms of the row and column
vectors, the figure shows no performance discrepancy between the
number of vectors.

Finally, we evaluated FADEP with actual image data. The
original images of various image qualities were provided in JPEG
format. The image data was Huffman/Run-length decoded, re-
ordered from the zigzag sequence to an8� 8 size DCT block, and
dequantized to form aDCT block frame. The evaluation used only
the luminance (Y) component for the DCT block frames. Then,
a DCT block arbitrarily located within the DCT block frames was
extracted using both the FADEP and the IPPD solution based mod-
ules. (Note that this procedure is regarded as a simplified form of
the inverse motion compensation.) Table 3 summarizes the exper-
imental results as well as some statistical properties of the input
DCT block frames. As shown in Table 3, the performance of the
FADEP based module is improved more than 1.7 times over the
IPPD based module for example images. It is also seen from Ta-
ble 3 that even for a image of very high quality, where most of
DCT elements are non-zero, a 15% performance improvement is
obtained. The FADEP extracted DCT block is equivalent to the
one extracted based on the IPPD solution,i.e., the FADEP based
module induces no degradation of the image quality. Moreover,
FADEP is also applicable to constant bit rate applications in which
the bit rate of the output would be controlled at the expense of
degradation. As shown in Fig. 2, the final scaling stage is separa-
ble from the total solution, and can be merged with the following
quantization stage that dynamically controls the bit rate of the re-
sulting video stream.

6. CONCLUSIONS

In this paper, we propose a new solution (FADEP) for the DCT
block extraction problem. Although FADEP is developed based
on Chang’s algorithms, it not only takes full advantage of a fast
DCT algorithm but also exploits characteristics of the input DCT
blocks without any approximation. The DCT block extraction
module based on FADEP achieves more than 70% performance
improvement without any degradation of image quality for the mo-
tion compensation equivalent computation.
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Even part Odd part Total�

Algorithm � � � � � �

Arai [8] 1 9 4 12 5 29
Chen [9] 2 9 6 12 8 29
Feig [10] 2 9 5 12 7 29
Hou [11] 3 9 8 12 11 29
Lee [12] 2 9 8 12 10 29
Loeffler [13] 2 9 6 12 8 29
Suehiro [14] 2 9 6 12 8 29
Vetterli [15] 2 9 6 12 8 29
Wang [16] 3 9 8 12 11 29

Table 1: Comparison of the complexity of scaled DCT for several
fast DCT algorithms.� and� are numbers of multiplications and
additions used in the algorithm, respectively. Note that the total
number of additions (�) includes a further eight additions from the
first stage.

Arg 8 Arg 7 Arg 6 Arg 5 Arg 4
Algorithm � � � � � � � � � �

Arai 13 29 12 27 11 24 10 22 9 21
Chen 13 29 12 26 11 23 10 20 9 18
Feig 14 29 13 27 12 24 11 22 10 20
Hou 13 29 12 25 11 22 10 19 9 17
Lee 13 29 13 28 12 25 12 23 11 21
Loeffler 13 29 13 27 12 24 11 22 10 20
Suehiro 13 29 12 26 11 23 10 20 9 18
Vetterli 13 29 12 26 11 23 10 20 9 18
Wang 13 29 12 26 11 23 10 20 9 18

Table 2: Comparison of the complexity of pruned IDCT for several
fast DCT algorithms. “Argi” represents the pruned IDCT with the
lowesti DCT coefficients as input. Note that all algorithms have
the same complexity fori < 4.

file(.jpg) CmpRatio hzzLi hrowLi hclmLi perform
test0 19.2 16.6 1.0 1.1 1.76
test1 11.3 17.2 1.5 1.5 1.63
test2 6.4 24.9 2.3 2.3 1.44
test3 5.4 45.1 4.7 4.7 1.15

Table 3: Relative performance of FADEP together with statistical
properties of input image data. “CmpRatio ” denotes the compres-
sion ratio of original JPEG file.hzzLi, hRowLi, andhClmLi
represent the average values of the zigzag length, rowL, and clmL
of the DCT block over the entire frame, respectively.
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Figure 1: DCT block extraction in the compressed domain.
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Figure 2: Flowgraph of FADEP for a 1-D input vector.
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