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ABSTRACT

The Kernel based Nonlinear Subspace (KNS) method is
proposed for multi-class pattern classi�cation. This method
consists of the nonlinear transformation of feature spaces
de�ned by kernel functions and subspace method in trans-
formed high-dimensional spaces. The Support Vector Ma-
chine, a nonlinear classi�er based on a kernel function tech-
nique, shows excellent classi�cation performance, however,
its computational cost increases exponentially with the num-
ber of patterns and classes. The linear subspace method is a
technique for multi-category classi�cation, but it fails when
the pattern distribution has nonlinear characteristics or the
feature space dimension is low compared to the number of
classes. The proposed method combines the advantages of
both techniques and realizes multi-class nonlinear classi�ers
with better performance in less computational time. In this
paper, we show that a nonlinear subspace method can be
formulated by nonlinear transformations de�ned through
kernel functions and that its performance is better than
that obtained by conventional methods.

1. INTRODUCTION

There are two techniques for tackling pattern classi�cation
problems, the parametric and non-parametric approaches.
As the form for the density functions of the patterns in the
feature space are unknown in many practical problems, the
non-parametric technique is usually more practical. The
linear discriminant function is a widely investigated non-
parametric classi�er and it is simple and robust. When
the true boundary between classes is complex, however,
this function is fundamentally incapable of performing well
and other classi�ers described by nonlinear functions are
needed. The Support Vector Machine (SVM) is a nonlinear
classi�er; it was recently studied and shown to o�er good
performance [9][1]. Its characteristics are that patterns are
mapped to an extremely high-dimensional space by the non-
linear transformation de�ned by kernel functions and the
optimization problems of classi�ers result in quadratic pro-
gramming problems. The computational cost for SVM opti-
mization, however, increases exponentially with the number
of training patterns (see Figure 4)!%Many more training pat-
terns are needed for good generalization performance than
required by linear classi�ers whose capacity is 2d+1 [2], be-
cause optimal SVMs are obtained by optimizing the linear
function in the transformed high-dimensional space. More-
over, for multi-class problems multiple SVMs should be op-
timized. By contrast, the subspace method [10][5] can be
used to design multi-category classi�ers in much less compu-
tation time. As the method allocates the subspace for each
class which well characterizes the class, it is more desirable
for the feature space dimension to be as high as possible.

Therefore, by combining the subspace method and the non-
linear transformation to high dimensional space de�ned by
kernel functions, we can obtain a nonlinear classi�er for
multi-category classi�cation that o�ers better performance
in less computation time.

In this paper, we formulate the proposed nonlinear sub-
space method using kernel functions and provide experi-
mental results on its performance. In the following, The
propose method is called the \Kernel based Nonlinear Sub-
space method" hereafter, and abbreviate it as KNS method.
Recently, a similar idea was reported independently [4][8].

2. NONLINEAR SUBSPACE METHOD

The kernel function k(x;y) is de�ned as

k(x;y) = �(x)t�(y) =

d�X
i=1

�i(x)�i(y); (1)

where � is a nonlinear function and d� is the dimension of
�(x). In the SVM, the kernel function is not de�ned as a
function of �(x) and �(y), but of x and y as follows.

k(x;y) = (1 + x
t
y)p (2)

k(x;y) = exp

�
�kx� yk

2

2p2

�
(3)

where, p is a constant. As shown in the SVM, the nonlinear
transformations de�ned by the kernel functions give rise to
two notable characteristics [9][1]. First, the dimension of
the space transformed by � is generally extremely high. As
all the axes of this high dimension space are linearly inde-
pendent, it is expected that there is a better classi�cation
hyper-plane than that in the original feature space. Second,
the optimization can be conducted by means of pattern ma-
nipulation in the original space without knowing �. This is
an advantage from the viewpoint of computational costs.

2.1. Projection to nonlinear class-subspace

When nonlinear function � is unknown, the principal com-
ponent vector v in a nonlinear space and the transformed
vector of z, �(z), are unknown. By employing the kernel
function technique, we can know the projection of �(z) to v,
vt�(z) [6]. Using sets of d dimensional patterns x1; . . . ;xn,
y1; . . . ;ym, z1; . . . ; zl and a function � : Rd 7! Rd� , de-
�ne pattern matrices X�(2 Rd��n), Y�(2 Rd��n), Z�(2
Rd��n) like

X� = (�(x1); . . . ; �(xn)) ; (4)

and de�ne �M as the mean pattern vector of �(xi) (i =

1; . . . ; n). When a function ~� is de�ned as



~� : x 7! �(x)� �M (Rd 7! Rd�), Y~�, Z~� can be written as

Y~� = Y� � 1

n
X�1nm (2 R

d��m) (5)

Z~� = Z� � 1

n
X�1nl (2 R

d��l); (6)

where 1nn0 is an (n; n0) matrix, all of whose elements are
1. De�ne a kernel matrix K(Y;Z) for a (d;m) matrix, Y,
and a (d; l) matrix, Z, as the (m; l) matrix of which the
(i; j) element is �(yi)

t�(zj)(= k(yi; zj)). It follows that
K(Y;Z) can be written as

K(Y;Z) = Y
t
�Z�: (7)

If we de�ne GX(Y;Z) as the (m; l) matrix of which (i; j)

element is ~�(yi)
t~�(zj), we obtain the following from (5),

(6), (7),

GX(Y;Z) = Y
t
~�
Z~�

= K(Y;Z)� 1

n
K(Y;X)1nl � 1

n
1mnK(X;Z)

+
1

n2
1mnK(X;X)1nl: (8)

If we write the eigenvalues of Xt
~�
X~� as �i(�1 � . . . �

�n), r(= rank(X~�)) of them are positive eigenvalues, and

are identical to the positive eigenvalues of X~�X
t
~�
. If we

write normalized orthogonal eigenvectors ofXt
~�
X~� andX~�X

t
~�

corresponding to an eigenvalue �i as ui and vi respectively,
and de�ne matrices U, V and � as

U = (u1; . . . ;ur) (2 Rn�r) (9)

V = (v1; . . . ;vr) (2 Rd��r) (10)
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775 (2 Rr�r); (11)

the relation

X~� = V�Ut (12)

holds. As vi represents the i-th principal vector of the pat-
tern set (�(x1); . . . ; �(xn)) and the relation about a singular
decomposition

vi =
1p
�i
X~�ui (13)

holds, the projection of a vector ~�(z)to the vi can be written
as

v
t
i
~�(z) =

1p
�i
u
t
iX

t
~�
~�(z) =

1p
�i
u
t
iGX(X; z): (14)

As this projection vti~�(zj) is an (i; j) element of VtZ~�, we
can obtain

V
t
Z~� = ��1Ut

GX(X;Z): (15)

� and U can be obtained as eigenvalues and eigenvectors,
respectively, of the matrix Xt

~�
X~�, i.e. GX(X;X). This

result means we can obtain the projection of any pattern z
to vi if only K de�ned by (7) is given.

2.2. Classi�cation criteria

In terms of classi�cation criterion, there are two major ap-
proaches to subspace classi�cation: the CLAFIC method
[10][5] and the projection distance method [3]. The KNS
method can be developed from either approaches. Here,
the latter case is shown. De�ne �i (i = 1; . . . ; d0) as the d0

largest eigenvalues of GX(X;X) = Xt
~�
X~�, ui and vi as the

normalized orthogonal eigenvectors of Xt
~�
X~� and X~�X

t
~�

corresponding to the eigenvalue �i, and de�ne Ud0 , Vd0

and �d0 using d0 uis, vis and �is as in (9), (10) and (11).
De�ne D(z) as the projection distance of a pattern �(z)
to a class subspace spanned by vi (i = 1; . . . ; d0). The
squared projection distance, D2(z), can be obtained from
the following equation,

D
2(z) = ~�

t
(z)~�(z)�

d0X
i=1

�
v
t
i
~�(z)

�2
(16)

= GX(z; z)� kVt
d0
~�(z)k2 (17)

= GX(z; z)� k��1d0 U
t
d0GX(X; z)k2: (18)

D2(z) is calculated for each class subspace and z is classi�ed
in the class in whichD2 is minimum. This result shows that
KNS can be applied if only the kernel function is given, it
does not need to know the nonlinear function � explicitly.

3. RESULTS AND DISCUSSION

We compared the classi�cation performance of our proposed
(KNS) method with that of conventional methods such as
k-nearest neighbor rule (kNN), Support Vector Machine
(SVM), and linear subspace method (SS), from four view-
points: performance against nonlinearly distributed pat-
terns, performance against multiple category patterns, per-
formance stability as regards parameter changes, and com-
putational cost.

3.1. Two-class problem with a nonlinear boundary

First, we investigated the ability of KNS to classify two
categories that have a nonlinear boundary. x1, y1, x2 and
y2 are randomly sampled values from normal distributions
with a mean and a variance (�; �2) of (0; 10), (10; 5), (3; 10)
and (20; 5) respectively. 2-dimensional patterns of class 1
and 2 were generated by the equation shown in the inset of
Figure 1. Figure 1 shows an example of 200 patterns and
the optimal boundary determined by KNS. The patterns of
class 1 and 2 are shown by open and closed circles respec-
tively. In the example, we chose the 2nd order polynomial
function for the kernel (p=2) and set the dimension of the
class-subspace to 3. In the following sections, this version of
KNS is written as KNS(poly,p=2,d'=3). As shown in Fig-
ure 1, KNS can even classify even two-class patterns that
have a nonlinear complex boundary.

Figure 2 shows the classi�cation error rates with the
proposed method (KNS), SS, SVM and kNN. Each classi�er
was optimized using various numbers (10 to 300) of train-
ing patterns and error rates were measured using a di�erent
set of 100 test patterns. The measurements were repeated
100 times and their means and standard errors are shown
in the �gure. The error rate curve for each method consists
of a pair of curves: the upper and lower curves represent
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Figure 1: An example of arti�cial patterns and the clas-
si�cation boundary determined by the proposed method
(KNS).

the errors rate for test patterns and training patterns re-
spectively. This kind of analysis provide us a insight about
both the classi�cation performance for a small number of
training patterns and the potential performance for an in�-
nite number of training patterns. As this pattern distribu-
tion is strongly nonlinear, the SS method can not classify
patterns correctly. By contrast, KNS showed much bet-
ter performance than SS and matched that of kNN. More-
over, the convergence to the optimal error rate is faster in
KNS than in kNN. The error rate of the SVM(poly,p=1)
or SVM(poly,p=2) was much worse than KNS because a
higher than 2nd order polynomial function is needed to de-
scribe the boundary in this example. Accordingly, SVM(poly,
p=3) is slightly better than KNS. SVM(rbf,p=2) showed
equivalent performance to SVM(poly,p=3) with slower con-
vergence. These results suggest that KNS can show good
performance even when the feature space dimension is low
compared with the number of classes or when the distribu-
tions of classes overlap.

3.2. KNS for multiple-category problems

We used binary patterns (72 � 76 pixels in size) of 48 cat-
egory hand-printed Japanese katakana characters provided
by ETL-5 [7]. 40 � 50 pixel regions were segmented from
each pattern and normalized by the mean and the stan-
dard deviation of gray levels in each image. These patterns
were compressed by KL expansion from 2000- to 10- or 64-
dimensional patterns, in which the cumulative proportions
were 0:47 and 0:86, respectively. Finally we obtained 208 of
10 or 64 dimensional patterns for each class. Although these
patterns are not necessarily suitable for character recogni-
tion, they are reasonable for estimating of classi�er perfor-
mance, because other researchers can regenerate the same
patterns, the patterns are distributed in a bounded region
in the feature space, they are classi�ed into more than two
classes, and they are less arbitrary than arti�cial patterns.
There were 100 training patterns and 100 test patterns.

Table 1 shows classi�cation error rates of various meth-
ods for the training patterns and test patterns. The results
for various patterns with 10 or 64 pattern dimensions and
10, 20 or 48 classes are shown in each line. As regards SS
and KNS, various values of parameters, p and cp, were ex-
amined and the best recorded results were shown. When
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Figure 2: Error rates of the proposed (KNS) and conven-
tional (SS, kNN and SVM) methods.

the feature space dimension, d, was 10, the error rate of SS
increased in accordance with the increase in the number of
classes, because of the increase in the pattern distribution
overlap among the classes. By contrast, KNS performed
much better than either SS or kNN. This suggests that
the transformation to a high dimensional space in the KNS
method improved the classi�cation performance. When d

was 64, KNS and SS showed similar results. This suggests
that the pattern distribution in this experiment has little
nonlinearity. Their error rates were much better than that
of kNN, which suggests that the convergence of the kNN
performance under training patterns is very slow in a high
dimensional feature space.

3.3. Performance stability as regards parameter
changes and computational costs

Figure 3 shows an analysis of the performance stability of
the KNS and SS methods versus subspace dimensions d0.
The upper �gure shows error rates for the training and test
patterns in various d0 and the lower �gure shows the corre-
sponding cumulative proportion values. It is clearly shown
that while SS is very sensitive to d0, the optimal values in
KNS are broader. This suggest that the KNS method is
more manageable than the SS method despite its nonlinear
property. The performance stability as regards the param-
eter value p of the kernel function was also investigated.
While KNS(rbf) was very stable around the optimal value
of p, KNS(poly) was more sensitive to p. Its optimal per-
formance, however, was comparable to or sometimes better
than that of KNS(rbf).

Figure 4 shows the computation time for various classi�-
cation techniques needed to design classi�ers and to classify



Table 1: Classi�cation error (%) for multiple-category problems

d: dimension 10 10 10 64
# of classes 10 20 48 48

p cp train test train test train test p cp train test
# of patterns 1000 1000 2000 2000 4800 4800 4800 4800
kNN (k=1) 0.0 11.7 0.0 22.5 0.0 27.4 0.0 13.9
kNN (k=5) 7.9 11.9 13.7 21.2 18.2 27.0 10.7 15.7
SS 0.81 14.0 16.8 25.8 29.8 36.1 39.5 0.96 0.3 6.6
KNS (rbf) 15 0.96 0.0 8.0 0.0 16.2 0.0 19.2 100 0.98 0.0 5.8
KNS (poly) 2 0.96 2.1 8.7 5.5 18.1 7.4 20.2 2 0.99 0.0 6.9

p: parameter value of the kernel function cp: cumulative proportion of class subspaces
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Figure 3: E�ect of subspace dimension on error rate.

test patterns for two-class problems. The time is plotted as
a function of the number of training patterns. The com-
putational costs for SVM increase to an impractical level
at more than 1000 patterns. KNS is 100 faster than SVM.
Moreover, while the computational time of SVM is propor-
tional to the square of the number of classes, that of KNS
increases linearly to the number of classes.

4. CONCLUSION

In this paper, we proposed a novel pattern classi�cation
technique, the Kernel based Nonlinear Subspace (KNS) method.
This method is practical for multi-class problems and shows
better performance than conventional methods such as the
linear subspace method and k-nearest neighbor rule. More-
over it is e�ective even for two class problems with nonlinear
characteristics and its performance is comparable to that of
the support vector machine in much less computation time.
These results con�rm that the KNS method can e�ectively
solve di�cult problems where the pattern distribution is
nonlinear multiple classes are involved.
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