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ABSTRACT

In this paper, correlation-matching techniques are em-
ployed to estimate multipath channel parameters for
a multiuser CDMA system with long spreading codes.
For given code sequences, the output correlation matrix
(parametrized by the unknown channel coe�cients) is com-
pared with its instantaneous approximation. By minimizing
the Frobenious norm of the resulting error matrix the chan-
nel parameters can be estimated up to a scalar ambiguity.
Under the assumption of i.i.d. code sequences, identi�a-
bility for each channel is guaranteed and the asymptotic
convergence of the proposed algorithm is established. Sim-
ulation results con�rm our claims. Comparisons with other
methods are also provided.

1. INTRODUCTION

DS-CDMA trchnology has several advantages over compet-
ing TDMA/FDMA alternatives and is a serious candidate
for the next generation wireless networks. Agreement how-
ever has not been reached yet on whether future systems
will employ short codes (which repeat at every bit) or long
codes whose period spans a very large number of bits. Many
current systems (e.g. IS-95) employ long codes [4].
From a signal processing viewpoint, the short code case

is more tractable since the interference pattern does not
change from bit to bit. It is not surprising that most of
the past research e�ort has focused on the short code case
(e.g. [1], [5]). Unfortunately, long spreading codes intro-
duce time-varying user signatures rendering classical adap-
tive multiuser algorithms impractical [5].
Recent research e�orts however have focused on the long

code case and have contributed to the design of new blind
receivers suitable for such systems [8], [10]. In these ap-
proaches, the channel parameters are �rst estimated and
receivers can then be constructed. We focus on channel es-
timation problems in this paper by employing correlation
matching techniques which have been extensively analyzed
and applied to a multitude of problems in blind identi�ca-
tion [7], detection [3] and channel estimation [2]. Extensions
to the time-varying systems have been reported in [9].
In the current setup the users' signatures are time-varying

due to the changing codes at every bit. However the multi-
path parameters are kept constant. We therefore can match
the output covariance matrix (parameterized by these un-
known channel parameters) with instantaneous approxima-
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Foundation Grant NSF-NCR 9706658, NSF-CCR 9733048 and
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tions based on the received data. By minimizing the result-
ing error, closed form solutions of channel vectors within a
scalar ambiguity are obtained. Moreover, their asymptotic
performance is studied.
It is established that our estimates for all corresponding

channels strongly converge to their true parameters. Based
on simulation results, the proposed method shows better
performance compared with subspace based approach [10]
for a heavily loaded system.

2. PROBLEM STATEMENT

In a DS-CDMA communication system with M users, let
us assume user j (j = 1; : : : ;M) transmits a zero-mean,
i.i.d. bit sequence wj(n) with variance �2wj = Efkwj(n)k2g.
Every bit is spread by an independently assigned i.i.d. code
sequence. Let us de�ne cj;k(n) , n = 1; � � � ; P; to be the
spreading code of user j, bit k, with P chips (n is the chip
index). Then at the chip-rate receiver, the output signal
contributed by user j is (see Fig. 1)

yj(n) =

1X
k=�1

wj(k)hj;k(n� kP ) (1)

hj;k(n) =

1X
m=�1

gj(m)cj;k(n�m� �j) (2)

where hj;k(n) is the signature of user j for bit k with chip
index n, 0 � �j < P is the delay in chip periods, gj(n) is
the discrete-time equivalent channel impulse response which
includes the transmitter and receiver �lters. The overall
received signal y(n) is then a superposition of signals from
all M users corrupted by AWGN v(n)

y(n) =

MX
j=1

yj(n) + v(n) (3)

where v(n) has zero-mean and variance �2v = Efkv(n)k2g.
In practice, communication channels are usually modeled as
having �nite impulse response. In the sequel the maximum
order for all multipath channels gj(n) is assumed to be q.
To obtain a compact form of our model in an observation

interval, let us collect P + q samples of y(n) in a vector
y(n) = [y(nP +1); : : : ; y(nP +P +q)]T . Then from (1), (2)
and (3), the received signal y(n) becomes

y(n) =

MX
j=1

[hjwj(n)+~hjwj(n�1)+
~~hjwj(n+1)]+v(n) (4)

where hj = [0; � � � ; 0; hj;n(1); : : : ; hj;n(P + q � �j)]T , ~hj =

[hj;n�1(P + 1� �j); : : : ; hj;n�1(P + q); 0; : : : ; 0]T and ~~hj =
[0; : : : ; 0; hj;n+1(1); : : : ; hj;n+1(q � �j)]

T are signatures of
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Figure 1. CDMA system with long spreading codes

wj(n), wj(n � 1) and wj(n + 1) at time n respectively1 .
According to (2), these signatures can be expressed as

hj = Cj;1(n)gj; ~hj = Cj;2(n� 1)gj;
~~hj = Cj;3(n+ 1)gj;

(5)
where gj = [gj(0); � � � ; gj(q)]

T is the channel vector of user
j, the code �ltering matrices are de�ned by2

Cj(n) =

2
66664

cj;n(1) 0
...

. . . cj;n(1)

cj;n(P )
...

0
. . . cj;n(P )

3
77775
;

Cj;1(n) =
h

0
Cj(n)(1 : P + q � �j ; :)

i
;

Cj;2(n) =
h
Cj(n)(P + 1� �j : P + q; :)

0

i
;

Cj;3(n) =
h

0
Cj(n)(1 : q � �j; :)

i
; (6)

and notation X(l1 : l2; :) from Matlab is used to take out
those rows from l1 to l2 of matrix X. By substituting (5)
in (4), the output becomes

y(n) =

MX
j=1

[Cj;1gjwj(n)+Cj;2gjwj(n�1)+Cj;3gjwj(n+1)]

+v(n) (7)
Let us de�ne the correlation matrix of this received data

at time n as Ry(n) = Efy(n)yH(n)jCj ;j=1;��� ;Mg condi-
tioned on the given code sequences for M users, where su-
perscript \H" denotes complex conjugate transpose (Her-
mitian). Then from (7), Ry(n) can be written as

Ry(n) =

MX
j=1

~Tj + �
2
vI

~Tj = �
2
wj
[Cj;1gjg

H
j C

H
j;1 +Cj;2gjg

H
j C

H
j;2 +Cj;3gjg

H
j C

H
j;3]

(8)
It is clear that Ry(n) is parametrized by constants �2v and
�wjgj under the assumption that Cj and delays �j are

available3 . Notice that due to the time-varying feature of
code sequences, Ry(n) is also time-varying. Our current
problem is how to retrieve the time-invariant parameters
gj based on the knowledge of Ry(n). We will focus on
estimating all gj next based on correlation matching tech-
niques.

1All signatures hj, ~hj and ~~hj change with time due to the
time-varying spreading codes. To simplify the notation, we drop
their time indices from now on.

2If �j = 0 then Cj;1(n) = Cj(n).
3The code acquisition problem, i.e., the estimation of the de-

lays �j is beyond the scope of this paper.

3. BLIND MULTIUSER CHANNEL
ESTIMATION

Let R̂y(n) denote some estimator of Ry(n) and let us build
our cost function as

J =
1

N

NX
n=1

kRy(n)� R̂y(n)k
2
F (9)

where N is the number of bits available. By applying the
relationship between k � kF of a matrix and its trace, it can
be written as

J =
1

N

NX
n=1

trf[Ry(n)� R̂y(n)][R
H
y (n)� R̂

H
y (n)]g (10)

By minimizing (10) with respect to �2v and �wjgj, these
unknowns could in principle be obtained.
However, two types of di�culties will impede our estima-

tion. First, R̂y(n) needs to be known in (10). Due to the
time-varying property of Ry(n), the sample average over
the data record (which is usually used for a time invariant
system) is not applicable here. Instead, we use instanta-

neous approximations R̂y(n) = y(n)yH(n) to substitute in
(10) and obtain

J =
1

N

NX
n=1

trf[Ry(n)� y(n)y
H(n)]2g (11)

where the Hermitian property of the correlation matrix is
used. By minimizing J in (11) with respect to gj, we can

obtain its estimate ĝj . It may seem that R̂y(n) is very in-
accurate and hence ĝj will not be accurate. But our cost
function J employs all data points and results in surpris-
ingly reliable estimates. This is further supported by our
consistency results.
Secondly, J is the fourth order function of the unknowns

gj, thus its high nonlinearity may lead to di�culties in es-
timating the channel vector gj. With this in mind, if we let
Dj = �2wjgjg

H
j , then (8) becomes a linear function of Dj

and �2v
Ry(n) =

MX
j=1

Tj + �
2
vI (12)

with Tj = Cj;1DjC
H
j;1+Cj;2DjC

H
j;2+Cj;3DjC

H
j;3. Substi-

tuting (12) in (11), our cost function becomes

J =
1

N

NX
n=1

trf[

MX
j=1

Tj + �
2
vI� y(n)y

H(n)]2g (13)

Thus we arrive at a quadratic function by overparametriz-
ing the problem using Dj instead of gj . If we minimize
this cost function, a unique closed form solution can be ob-
tained. Let's �rst de�ne the derivative of J with respect
to a matrix Dj as a matrix, with (k;m)-th element equal
to the derivative with respect to the (k;m)-th element of
Dj, i.e., [rDjJ]k;m = r

d
(k;m)
j

J. To �nd the minimum solu-

tion of (13), it is su�cient to di�erentiate it with respect to
�2v and Dj respectively, and set these derivatives equal to

zero. To obtain a closed form solution D̂j, here we de�ne

an unknown vector d̂j which is a vector formed by stacking

all columns of D̂j into one long vector (see [6, Ch. 12])

performed by the vec function d̂j = vec(D̂j), and further-

more de�ne a vector d̂ = [(d̂1)
T ; � � � ; (d̂M)T ]T which con-

tains all our unknown parameters. Based on properties of
the Kronecker product \
" (see [6, Ch. 12]), it is shown

in Appendix A that the estimate d̂ satis�es the following
equation T d̂ = t (14)



with

T =
1

N

NX
n=1

(QT
Q)�

1

(P + q)N2

NX
n=1

b(n)

NX
n=1

[b(n)]H

(15)

t =
1

N

NX
n=1

fQT
vec[y(n)yH(n)]g�

PN

n=1
[yH(n)y(n)]

(P + q)N2

NX
n=1

b(n)

(16)
where Q = [Q1; � � � ;QM ];

Qj = C
�
j;1 
Cj;1 +C

�
j;2 
Cj;2 +C

�
j;3 
Cj;3 (17)

b(n) = vec(H); H = [H1; � � � ;HM ];

Hj = C
H
j;1Cj;1 +C

H
j;2Cj;2 +C

H
j;3Cj;3 (18)

\*" denotes complex conjugate, and Cj;1;Cj;2;Cj;3 are
given by (6). Notice that all code matrices depend on time,
but the time index is dropped for the sake of notational
convenience, therefore H and Q are also time-varying. In
(14) there are M(q + 1)2 unknown parameters in d̂ and

M(q + 1)2 equations. d̂ can be uniquely solved as

d̂ = T
�1
t (19)

as long as the matrix T is nonsingular as will be discussed

in the next section. According to our de�nitions of d̂, our
estimates d̂j can be obtained by taking out corresponding

elements of d̂. Then the reverse operation of vec function
can be performed to obtain D̂j.

Once D̂j is found, SVD on D̂j can be performed to ob-
tain its eigenvector corresponding to the unique maximum
eigenvalue, which is our estimated normalized channel vec-
tor

gj

kgjk
for user j. The computational load of this SVD

operation is not severe because Dj is a (q + 1) � (q + 1)
small size matrix for moderate channel order q.
The proposed algorithm is batch and requires knowledge

of all users' codes. Adaptive versions are possible but will
be reported elsewhere. Also, modi�ed versions are possible
when only knowledge on a single user's code is available
(single user receivers). They will not be reported here how-
ever, due to lack of space.

4. PERFORMANCE ANALYSIS

As is well-known, the minimization of the quadratic cost
function in (13) admits a unique solution, but the question
here is if this solution can guarantee consistency as N !
1. To establish the identi�ability of the problem, we start
from eq. (14) and show that our solution in (19) strongly
converges to d. The asymptotic result will be presented
without proof due to the limited space.
To simplify our analysis, we assume that all M users are

synchronous which means �j = 0 for j = 1; � � � ;M . There-
fore Cj;1 = Cj according to eq. (6). Moreover, since q � P
in practice, then Cj;2;Cj;3 in (6) are only a small portion
of Cj(n) which will be ignored next. Hence, in our eqs.
(17)-(18), Qj = C�

j 
Cj, Hj = CH
j Cj. Furthermore, the

long spreading codes are assumed to be real for the same
purpose. Then CH

j = CT
j and C�

j = Cj as well as b
H = bT

are valid.
Lemma 1: If all code sequences cj(n) (j = 1; � � � ;M) are
assumed i.i.d. taking values from f+1;�1g and indepen-
dent of both the transmitted bits and the AWGN, then it
can be shown that as N ! 1, T and t in (15) and (16)
converge to U and Ud with probability 1 respectively, that
is

T
w:p:1
�! U; t

w:p:1
�! U d

where U = ~A� 1

P+q
~b~bT ; ~b = P vec([Iq+1; � � � ; Iq+1]) with

M blocks, Iq+1 is a (q+1)� (q+1) identity matrix, ~A has
M �M blocks and J is of dimension (q+1)� (q+1) given
by

~A =

2
6664

B1 B2 � � � B2

B2 B1

. . .
.
..

.

.

.
.. .

. . . B2

B2 � � � B2 B1

3
7775 ;J =

2
6666664

0 1 0 � � � 0

. . .
. ..

.. .
...

...
. ..

.. . 0

.. . 1
0 � � � 0

3
7777775

B1 =

2
6664

X0 X1 � � � Xq

X1 X0

. ..
..
.

...
. . .

. .. X1

Xq � � � X1 X0

3
7775 ;B2 =

2
6664

Y0 Y1 � � � Yq

YT
1

Y0

.. .
.
..

...
. . .

.. . Y1

YT
q � � � YT

1
Y0

3
7775

X0 = P 2 Iq+1; Y0 = P Iq+1

Ym = (P �m) Jm; Xm = Ym +YT
m

for m = 1; � � � q; matrix Xm only has non-zero elements
along its m-th upper and lower diagonal and Ym with non-
zero elements along its m-th upper diagonal. 2

According to Lemma 1, identi�ability in this problem is
equivalent to the non-singularity of matrix U. Notice that
matrix U depends only on the parameters P , M and q.
For a large range of possible P (e.g., up tp 256), M (with
M � P ) and q (e.g., 1 to 20), it is true thatU is nonsingular.
We have been unable however to obtain a general proof of
this conjecture.

The nonsingularity of matrix U indicates that D̂j asymp-
totically converges to Dj for all possible j (j = 1; � � � ;M).
Since the normalized channel

gj
kgjk

is the eigenvector of Dj

corresponding to its maximum eigenvalue, all channel pa-
rameters can be identi�ed up to a scalar ambiguity.

5. SIMULATIONS

In our experiment, a DS-CDMA system is simulated. All
users have equal power. Their transmitted bits and assigned
long spreading codes are assumed i.i.d. taking values from
f+1;�1g. Other values are set as P = 16 (e.g., [8]), q = 3,
and the bit SNR = 15dB. We will use the mean square
error (MSE) of the channel estimates Efkĝj � gjk2g as the
performance measure, where gj is the normalized channel
vector for user j and ĝj is its estimate. This expected value
is approximated by the average result from 50 Monte Carlo
runs.
The result for the proposed method (batch) is shown in

Fig. 2 with M = 8. Each user transmitted 500 bits. Since
there are no critical di�erences between estimates for dif-
ferent users, the MSE is presented only for four users, in a),
b), c), d) respectively. It can be seen that the MSE for each
channel of the proposed method reaches 10�2 after 200 bits
are transmitted.
Our next experiment is to compare the proposed method

with the recently presented subspace method [10] for sys-
tems with di�erent loads. We assume all users experience
the common multipath channel and implement the subspace
approach in [10] by assigning the desired user in group 1 and
all other users in group 2. The channel estimation errors
for a 2-user system are compared in Fig. 3(a), while for an
8-user system in Fig. 3(b). Solid lines represent the pro-
posed method while dashed lines for the subspace method.
It can be observed that the subspace method has better
performance than the proposed algorithm when the system



has only a few users according to Fig. 3(a). However it
converges to a high error level under heavy load based on
Fig. 3(b).

Appendix A: Derivation of Equation (14)
In order to solve for Dj and �2v, we follow our de�nition of
the derivative and di�erentiate (13) with respect to �2v and
Dj respectively,

r�2v
J = 2(P+q)�2v+

2

N

NX
n=1

[tr(

MX
m=1

Tm)�y
H (n)y(n)] (20)

rDjJ =
2

N

NX
n=1

fCT
j;1[

MX
m=1

Tm + �
2
vI� y(n)y

H(n)]C�
j;1

+ C
T
j;2[

MX
m=1

Tm + �
2
vI� y(n)y

H(n)]C�
j;2

+ C
T
j;3[

MX
m=1

Tm + �
2
vI� y(n)y

H(n)]C�
j;3g (21)

Where \*" represents complex conjugate and Tj is previ-

ously de�ned. At the equilibrium points (�̂2v, D̂j) of our cost
function J, these derivatives are equal to zero. By setting
(20) to zero, �̂2v is obtained �rst as

�̂
2
v =

1

(P + q)N

NX
n=1

f[yH(n)y(n)]� [tr(

MX
m=1

T̂m)]g (22)

where T̂m is obtained via replacing Dm by D̂m in Tm. By
using the property of the trace of the product of matrices,
(22) becomes

�̂
2
v =

1

(P + q)N

NX
n=1

f[yH(n)y(n)]� [b(n)]H d̂g (23)

where b(n) is given by (18). Substituting (23) in (21), and

setting it to zero, we can arrive at an equation for d̂. To
obtain a closed form solution, we take vec operation on both
sides of this new equation. By applying the properties of
Kronecker product (see [6, Ch. 12]) and stacking all equa-
tions for j = 1; � � � ;M together, (14) can be obtained. 2
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a) MSE of channel 1 for batch method
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b) MSE of channel 2 for batch method
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c) MSE of channel 3 for batch method
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d) MSE of channel 4 for batch method

Figure 2. MSE of the proposed batch method for an 8-user
system (4 users shown).
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Figure 3. Comparison of the proposed batch method with
subspace method for a 2-user and an 8-user system.


