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ABSTRACT
In this paper we investigate the spectral density of Line Spectral
Frequency  (LSF) content in languages.  The results show that
the phonetic variation of languages is reflected in the LSF space.
This leads to an alternative approach to the design of LSF
quantisers. A trained LSF codebook, like the phonetic inventory
of a language, is a static description of spectral behaviour of
speech.  As clear relationships exist between phonetic segments
and LSFs, the structure of an LSF codebook can be analysed in
terms of the phonetic segments. The new approach incorporates
phonetic information into the structure of LSF codebooks
through combining individual phonetic codebooks. The
investigation leads to the conclusion that phonetic information
can be usefully employed in codebook training in terms of
perceptual performance and bit-rate reductions.

1. INTRODUCTION

The quantised spectral envelope of speech represents an
important part of the bit allocation in speech coding.  Low bit-
rate approaches to spectral envelope quantisation utilize Linear
Prediction (LP) techniques to exploit the redundancies offered
through the quasi-periodic structure of speech.  The efficient
representation of LP coefficients (or LPCs) can be achieved using
reflection coefficients, the arcsine of reflection coefficients, log-
area ratios, intermittence spectral frequency pairs and line-
spectral frequency-pairs (LSFs).  LSFs are a very popular
representation due to their stability and advantages in efficiency
and error correction.

Reducing rate-distortion levels while maintaining speech
transparency is increasingly difficult at low-bit rates.   The
success of several LBR quantisation techniques is due to the
utilisation of speech structure in quantiser design.  Paliwal and
Atal [1] report performance improvements by placing emphasis
on formant peaks improving the representation of vowel
structure, a factor considered to be perceptually important in
speech.  It has also been shown that humans have a reduced
perceptual resolution in the higher frequency bands of speech [2].
Listeners were found to have difficulty distinguishing unvoiced
speech from power-matched gaussian white noise.

Varying the levels of information content required for different
speech classes has also been explored.  In some work on variable
rate coding [3,4] speech was divided into general categories
based on silence, voiced and unvoiced speech and voice-onset
information.  While this and other work [5] has claimed to use
phonetic segmentation, there has been no attempt to incorporate
actual phonetic information into the design of the quantiser.

The main motivation for the work presented in this paper is to
investigate the role of phonetic structure in the quantisation of
low-bit rate speech coding parameters.  Prior work [6] shows that
inter-language phonetic differences are not reflected in the
structure of vector quantisers designed using a standard mean
squared error (MSE) measure.  When quantising speech, not
pertaining to the language of the codebook training set,
quantitative cross-language performance tests yielded significant
type 2 outliers. The three criterion for transparent speech are 1)
an average spectral distortion of 1dB, 2) less than 2% of outliers
between 2dB and 4dB (type 1 outliers) and 3) no outliers greater
than 4dB (type 2 outliers).

The globally minimal solution of a MSE approach provides a
robust quantiser design but information theory [7] suggests that a
much lower entropy solution could be achieved through the
analysis and exploitation of redundancies in the phonetic
structure of language.  Fundamental work in information theory
[8] suggested that the minimum entropy of speech is based in
part on the phonetic constituents of language.  It is therefore
reasonable to suggest that quantisers design based on phonetic
structure will provide improvements in rate-distortion ratios.

The organization of the paper is as follows. Section 2 illustrates
how the composition and density of the phonetic makeup of
speech can vary across languages.  Section 3 presents a phonetic
analysis of the LSF domain and explains how the various
phonetic components contribute to the overall codebook
structure. Section 4 shows how structural phonetic information
can be used to effectively design LSF codebooks with
comparable subjective and objective quality to standard
codebook design approaches.

2. STATISTICAL PROPERTIES OF
LANGUAGE SPECTRA

As languages have a distinct phonetic make-up it follows that
they will also have characteristic spectral structures.  Figure 1
shows the bi-variate spectral histogram of the LSF (1-2) spectra
of a statistically large sample (144,000 vectors) of Mandarin
speech (taken from the OGI-multi-language speech database [9]).
The magnitude of the bi-variate spectral histogram of a language
provides information about the relative frequency of occurrence
of sounds of a language.  Figure 2 shows the bi-variate spectral
histogram of a similar sample size of Vietnamese. It is clear that
while Mandarin and Vietnamese occupy a similar LSF space, the
characteristic distribution is quite different.  Examination of the
spectral structure of a large number of languages (reported in full
detail in [10]) shows that the LSF spectra of languages generally
occupy the same regions of LSF space but the distribution of
vectors can be highly varied.  Consequently it is important that



these variations are catered for when designing the structure of
LSF codebooks.

Figure 1: The cumulative bi-variate spectral density of
the LSF (1-2) spectrum of OGI-11 MANDARIN
(144,000 vectors)

Figure 2: The cumulative bi-variate spectral density of
the LSF (1-2) spectrum of OGI-11 VIETNAMESE
(144,000 vectors).

3. MULTI-LANGUAGE SPECTRAL
QUANTISATION

Work assessing multi-language quantisation performance
[11,12,13] have reported that robust cross-language quantisation
is achieved using both split and multi-stage VQ techniques.  It is
evident, from cumulative LSF density spectra across languages (a
full range of languages is shown in [10]), that the claims of
similar quantisation performance are valid within the scope of the
presented work (A group of Indo-European languages, English,
German, Italian and Norwegian). It is however, unwise to
extrapolate these results to an assumption that quantisation
performance is similar across all languages.   In the training of
LSF codebooks a Mean Squared Error (MSE) algorithm allocates
codebook vectors as a function of the relative presence of each

sound in the training stimulus.  The associated repercussions of
multi-language LSF quantisation with MSE designed codebooks
can be seen most clearly in the nature of quantisation outliers in
particular, type 2 outliers.  In prior assessments of LSF
quantisation [6] it was shown that the presence of type 2 outliers
was quite varied across languages.  Figure 3 gives an example of
how type 2 outliers can vary across languages (see [10] for a
more comprehensive study of all the 22 languages of the OGI
database).  Comparing Figures 3 (a) and (b) it is clear that the use
of Vietnamese as a training language has resulted in a much
higher presence of type 2 outliers than that of Mandarin.  The
visible differences seen in the cumulative LSF density spectra are
clearly reflected in the structure of the codebooks and
consequently in the relative magnitude of type 2 outliers (It is
interesting to note that in [11] the behaviour of type 2 outliers
was not considered).

(a) (b)

Figure 3: Type 2 outliers present when quantising 4 OGI
test languages (60,000 vectors for each language) using
split VQ LSF codebooks trained on (a) Vietnamese and
(b) Mandarin

From these results it is evident that even between two languages
picked from the large number of World languages substantial
differences in spectral content exist.  The exploitation of such
differences across all languages requires a common approach to
selecting language, and phonetically, sensitive codebooks.  Here
we suggest the construction of codebooks from smaller trained
phonetic unit codebooks. This allows control the phonetic
content and the flexibility to cater for the known phonetic
variations across languages.

4. PHONETIC MAKE-UP OF LSF SPACE

LSFs, unlike LPCs, provide us with a perceptually meaningful
representation of a section of speech.  The frequency values of
LSFs directly correspond to the speech spectrum and their
behaviour over time can be directly related to evolutionary
characteristics of that spectrum e.g. the growth and dissipation of
formant activity.  Further, the analysis of LSFs across individual
phonemes yields important information about the distinct
structure of a given speech segment in the LSF domain.  LSFs (as
opposed to other representations of the LP parameters) are
particularly useful since they exhibit a localized spectral
sensitivity property [14]. This allows an isolated investigation
into the phonetic components of language in the context of speech
coding parameters.  The relatively high peaks in the LPC power
spectrum are indicative of the presence of voiced speech and, for
a correctly dimensioned LP analysis, will correspond to the



formant activity. In the presence of formants, LSFs have a
tendency to cluster around the angular positions corresponding to
the roots of the LPC filter when they are close to the unit circle
[15] (Figure 4 graphically illustrates this behaviour).

Figure 4: The regions of activity of LSFs. By converting
a 0 to 4kHz simulated formant frequency sweep into
LSFs, distinct regions inside which LSFs contribute to
the representation of formants can be seen.

In the LSF domain the regions of activity of formants can be
clearly seen.  This region is bounded by a lower diagonal
asymptote corresponding to the true formant frequency (in the
LSF domain this corresponds to the juncture of subsequent
LSFs). Figure 5 was created using a Bi-Variate LSF histogram of
separate samples of phonemes extracted from TIMIT-TRAIN. It
shows the primary regions of LSF activity of a number of
phonemes (concentrating on LSFs 1 and 2).  It is apparent that
voiced phonemes occur inside tight zones, while unvoiced
phonemes occur in relatively larger zones.  The regions of voiced
activity shown in Figure 5 are clearly oriented along a diagonal
region. There is a progression of vowel zones along the diagonal
of Figure 5, from closed vowels at the bottom to open vowels at
the top.  This explains the high density of LSF vectors along the
diagonal of Figure 1 as Mandarin has a high voiced speech
content. As mentioned in Section 1, it is well known that humans
have a reduced level of perceptual frequency resolution in the
upper end of the speech spectrum and that in this region it is
difficult to distinguish between the complex structure of unvoiced
speech and simple Gaussian noise. It can be seen in Figure 5 that
the regions of unvoiced activity are considerably wider spread.
While there is considerable overlap in the distribution of LSF
vectors among unvoiced phonemes it can be seen that they occur
in distinct, identifiable regions.

5. EXPERIMENTS

To further investigate the nature of the phonetic structures
described in Section 4 a series of codebooks were generated in a
process whereby individual phonemes from the TIMIT-TRAIN
database were segmented out and clustered together for training.
The unaltered TIMIT-TRAIN was also used to train a set of
standard MSE split VQ codebooks. Further, to verify the role of
phonetic segmentation, TIMIT-TRAIN was also segmented and

re-clustered together in an arbitrary manner so as to train a set of
“control” codebooks.

Figure 5: The phonetic composition of LSF(1-2) space.

5.1 Speech Database

The speech data used in this investigation were extracted from
the TIMIT database [16].  The data used in training comprised of
speech from 460 speakers (female and male).  The speech was re-
sampled to 8kHz and then segmented into phonetic units using
the TIMIT phonetic labeling information. (the chosen labeling
scheme used by TIMIT uses 51 distinct phonetic units).

5.2 Quantisation Performance

Objective Tests

Codebook quantisation distortion between the original LPC
spectra and the phonetically quantised LPC spectra was measured
using the standard spectral distortion (SD) measure (in dB). The
entire set of TIMIT-TEST sentences was used in objective testing
across a range of codebook sizes. Figure 6 compares the SD
quantisation performance of the phonetically structured quantiser
with the standard MSE quantiser across the set of test sentences.
As would be reasonably expected the MSE trained codebook
outperforms the phonetically trained codebook in terms of the
square error based SD.  However as is well established coder
performance is best assessed using subjective tests.  In this case a
series of simple pair-wise comparisons were performed across a
listener base.

Subjective Tests

A set of six sentences was selected from TIMIT-TEST.  The
sentences were encoded using both a standard MSE codebook
and a phonetically structured codebook for a range of codebook
sizes.  The sentences were played to a listener base of ten adult
speakers who were asked to indicate which sentence of the pair
they preferred.  The results of this pair-wise comparison are
presented in Figure 7. For equivalent quality the MSE and
phonetic codebooks would score equal rankings in the subjective
pair-wise testing.  Alternatively listeners were allowed to express
no preference between the two.  The results show that in general



the perceptual phonetic codebook (which is substantially non-
optimised) compares favourably with the standard MSE trained
codebook.  Further, a dramatic difference in performance
between the phonetic and control codebooks is demonstrated.  It
is clear that the use of phonetic segmentation techniques can
produce codebooks of similar performance to existing training
techniques.  Further refinement of the techniques for building
phonetically segmented codebooks should lead to improved
overall performance at lower bit rates. It is important to note the
contrast in these subjective results compared to the objective
results discussed previously. While this is to be expected from
the well-known differences in subjective and objective measures
of speech quality, the differences also highlight more complex
perceptual effects.  For example investigation of the objective
performance demonstrates substantially increased type 1 and type
2 outliers for the phonetic codebook. However these subjective
results indicate that, and checks confirm that the outliers
correspond to perceptually unimportant phonetic segments.

Figure 6: SD Objective performance tests; MSE cw.
phonetic segmentation (a) Mean SD (b) SD Outliers.

Figure 7: Pair-wise subjective performance tests
comparing standard MSE codebooks  with phonetically
segmented codebooks

6. CONCLUDING REMARKS

This paper has looked at the statistical characteristics of language
behaviour in LSF space and demonstrated that there are notable
differences in the distribution and concentration of LSFs between
languages.  The consequences, in a multi-lingual environment, of
training LSF codebooks using speech of a single language were
discussed.  This is particularly reflected in type 2 outlier
performance results.  The concept of designing codebooks using
individual phonetic elements was introduced.   An investigation
into the use of phonetic structure in the design of LSF codebooks
was then used to illustrate, through subjective and objective tests
that significant redundancies are present in the standard MSE

style approach to quantiser design.  The reported subjective test
results indicate favourable as compared to MSE codebooks.
However, it must be emphasied that these results use codebooks
constructed of an un-optimised mix of phonetic segments. The
use of phonetic density information to improve the performance
of phonetically constituted codebooks is currently under
investigation.
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