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ABSTRACT

This paper presents a new analytical model for the second
moment behavior of the Filtered-X LMS algorithm. The new
model is not based on the independence theory, and is derived
for gaussian inputs and slow adaptation. Monte Carlo simulations
show excellent agreement with the behavior predicted by the
theoretical model.

1. INTRODUCTION

Active noise and vibration control (ANC) has become an
important application area for adaptive filters. The most popular
adaptive algorithm used for ANC is the Filtered-X LMS
(FXLMS) algorithm [1,2]. This algorithm is a modification of the
well known LMS algorithm. The reference signal is filtered so as
to compensate for filters inherent in the electro-acoustic
adaptation loop. These additional filters in the adaptation system
significantly complicate the behavior and analysis of the adaptive
algorithm. Conventional LMS analysis is not applicable to the
FXLMS algorithm. Also, simplifying LMS assumptions cannot
easily be extended to FXLMS. This applies to the well known
independence theory (IT), in which time-lagged input vectors are
assumed independent. The additional loop filters generate signal
correlations. These correlations invalidate the IT for simplifying
the statistical analysis of the FXLMS. Hence, the exact analysis
of FXLMS becomes very complex. This complexity holds even
for the exact analysis of the conventional LMS algorithm [3].
Most of the FXLMS stochastic analyses in the open literature
concentrate upon algorithm stability [2-5]. Stability results are
useful for algorithm design. However, transient and steady-state
weight statistical behavior under different implementation
conditions is necessary for a better understanding of the
algorithm’s properties.

Some results have been obtained recently for the stochastic
behavior of FXLMS. In particular, a recursion was derived in [4]
for the mean weight behavior. The analysis assumed both IT and
extremely slow convergence rates. First and second moment
adaptive weight expressions were derived using IT in [6] for the
case of exact secondary path estimation. The expressions were
then specialized to the Delayed LMS algorithm. These results
yielded some insight into FXLMS behavior. However, the model
and conclusions for the Delayed LMS algorithm cannot easily be
extended to non-trivial secondary path filters. The signal
correlations caused by the ANC system filters invalidate the IT

for mathematical simplification. Hence, IT cannot be used and
the exact analysis becomes mathematically intractable.

A more recent result [5] has presented an analytical model for
the mean weight behavior of the FXLMS algorithm that does not
use the independence theory. The simplifying assumption used in
[5] was that the correlation between reference signal vectors is
more important for determining the weight vector behavior than
the correlations between the weight and reference signal vectors.
This assumption is supported by extensive numerical
simulations.

This paper presents a second moment analysis of the FXLMS
algorithm for the case of exact secondary path estimation. The
analysis does not rely on the IT. A deterministic recursion is
obtained for the weight-error covariance matrix, under the same
assumption used in [5] and for a gaussian reference input. This
recursion is then used to predict the mean square error behavior.
Monte Carlo simulations show excellent agreement with the
theoretical predictions in both the transient phase of adaptation
and in steady-state.

2. ANALYSIS

The Analysis Model

Fig. 1 shows a block diagram for the FXLMS algorithm. W o

is the unknown system, W( )n  is the adaptive filter and �S  and
�S  are linear filters. This diagram can model a ANC system [1]

and S is often denoted the secondary path filter. Usually, �S  is
designed to duplicate S, and this is the case analyzed here.

The notation used in this paper is the following:

[ ]W o = −w w wN

T

0 1 1
o o o, , ,� : impulse response to be identified

[ ]W( ) ( ), ( ), , ( )n w n w n w nN

T= −0 1 1� : adaptive weight vector

[ ]S = −s s sM

T

0 1 1� : impulse response of the system in the

auxiliary path

[ ]X( ) ( ), , ( )n x n x n N
T= − +� 1 : observed data vector
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Figure 1. Block diagram - FXLMS algorithm.

[ ]X f f f

T
n x n x n N( ) ( ), , ( )= − +� 1 : filtered reference signal

d n( ) : primary signal
z n( ) : white noise (uncorrelated with any other signal) with

variance σ z
2 .

For the analysis, x n( )  is assumed gaussian with variance

σ x
2 . Also, the dimensions of W o and W( )n  are assumed the

same for notational simplicity.

3. MEAN-SQUARE ERROR EQUATION

For �S S= , the signals in Fig. 1 can be described by:
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d n nT( ) ( )= X W o (2)

y n n n n nT T( ) ( ) ( ) ( ) ( )= =X W W X (3)

y n s y n i s n i n il i
i

M

i
i

M
T( ) ( ) ( ) ( )= − = − −

=

−

=

−

∑ ∑
0

1

0

1

  X W   (4)

x n s x n if i
i

M

( ) ( )= −
=

−

∑
0

1

 (5)

X Xf i
i

M

n s n i( ) ( )= −
=

−

∑
0

1

 (6)

Substituting (2)-(4) in (1) yields the instantaneous error
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Squaring (7) yields
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Taking the expected value of (8) yields the expression for he
mean square error (MSE):

( )[ ] ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]

( ) ( ) ( )[ ]
( ) ( )[ ] ( )[ ]

E e n E d n s E d n n i n i

s s E n i n i n j n j

s E z n n i n i

E d n z n E z n

i
T

i

M

i j
T T

j

M

i

M

i
T

i

M

2 2

0

1

0

1

0

1

0

1

2

2

2

2

= − − −

− − − −

− − −

+ +

=

−

=

−

=

−

=

−

∑

∑∑

∑

X W

X W X W

X W

             +

             

             .

It has been shown in [4], [5], [7] that the optimum weight
vector which minimizes (9) is given by:

W R Popt ss s= −~ ~1 (10)
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To proceed with the analysis, it is assumed that the
correlation between reference signal vectors is more important
than the correlation between weight and reference signal vectors.
This assumption is supported by extensive numerical
simulations.

Defining the weight-error vector V W W( ) ( )n n opt= − , using

(2) an assuming weight and reference signal vectors independent,
the MSE equation (9) becomes:
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A recursive expression for ( )[ ]E n iV −  can be readily

obtained from the results in [5] as
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Thus, the only undetermined term in (11) is the weight-error
covariance matrix E n j n iT[ ( ) ( )]V V− − . A recursive equation to
determine this matrix is derived in the next section.

4. WEIGHT -ERROR COVARIANCE MATRIX

A recursion for the adaptive weight vector can be obtained
from the results in [5] as:

(9)
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Subtracting Wopt  from both sides of (13) and using the

definition of the weight-error vector ( )V n  yields:
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Post-multiplying (14) by its transpose, taking the expected
value, assuming weight and reference input vectors independent
and using the fourth-order moment theorem for a gaussian
process, the expression for the weight-error covariance matrix is
obtained as
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Recursions (11), (12) and (15) define the analytical model for
the second moment behavior of the FXLMS algorithm.

5. SIMULATION RESULTS

This section presents some examples which verify the
accuracy of the deterministic model composed by equations (11),
(12) and (15). Consider the following cases:

a)  W o = − −[ . , . , . , . , . ]0 0197 01179 08 01179 0 0197    , µ = −10 3 ,

S = [ . , . ]10 0 5 , ( )x n  white and gaussian, σ x
2 1= , σz

2 0 001= . .

b)  W o = − −[ . , . , . , . , . ]0 0197 01179 08 01179 0 0197    , µ = −10 3 ,

S = −[ . , . ]10 05 , ( )x n  white and gaussian, σ x
2 1= ,

σz
2 0 001= . .

These two examples were chosen to show the effect of
secondary path filter frequency response on the algorithm
behavior. The filter S is low-pass in (a) and a high-pass in (b).

Fig. 2 shows the MSE behavior predicted by the theoretical
model and obtained from a Monte Carlo simulations (100) runs
for example (a). The two curves are in excellent agreement. The
curves show excellent agreement. Fig. 3 shows the evolution of
selected elements of the present weight-error covariance matrix
obtained from simulation and calculated using (15). Again, the
theoretical predictions are in close agreement with the simulation
results. The results were plotted at intervals of 75 iterations for
better visualization. This suggests that the theoretical
assumptions are accurate. Similar results were obtained for the
other weight-error correlation matrices.

Curves for example (b) are shown in Figs. 4 and 5
(corresponding to Figs. 2 and 3). The results in Fig. 5 were also
plotted at intervals of 75 iterations. Again, the theoretical and
simulated results are in excellent agreement.

These examples clearly show that the new model can be used
to study and predict properties of the FXLMS algorithm. The
secondary path frequency response can have a significant effect
on the cancellation level as shown by these two examples. As
compared to LMS cancellation, the low-pass filter causes a 10 dB
cancellation loss whereas the high-pass filter causes about a 3 dB
loss.

The theoretical model considers the effects of the signal
correlations introduced by the filtering operations. Thus, each
update of (15) or (11) requires all weight-error covariance
matrices since system initialization. This should come at no
surprise and happens also for models of the LMS algorithm that
include signal correlation effects [3]. Three past terms were used
to compute the covariance matrices for the examples presented
here.

Fig. 2. MSE: simulation and theoretical prediction for example (a) .

iterations

MSE [dB]
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Fig. 4. MSE: simulation and theoretical prediction for example (b).

6.  CONCLUSIONS

This paper has presented a second moment analysis of the
FXLMS algorithm for gaussian inputs. The analysis included the
correlations between lagged input vectors and was not based on
independence theory. An analytical model has been derived to
predict the algorithm behavior both during the transient phase of
adaptation and in steady-state. This model consists of
deterministic recursions for the MSE and weight-error covariance
matrix. Monte Carlo simulations show excellent agreement with
the theoretical predictions obtained from the new analytical
model.
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