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ABSTRACT

Balanced realizations are attractive for adaptive filtering,
due to their minimum parameter sensitivity and due to their
usefulness in model-reduction problems. A balanced-realization
based adaptive IIR filtering algorithm is presented. The proposed
algorithm uses a stochastic-gradient based search technique to
minimize the output error. The algorithm inherently guarantees
that the adaptive filter will always remain stable, which obviates
the need for the usual stability check after adaptation. Since the
algorithm minimizes the output error, the resulting estimates are
unbiased. We try to avoid possible convergence to local minima
of the output-error surface by using "good" initial estimates, as
obtained from equation-error based adaptive filters. Simulation
results show that the proposed algorithm converges to the global
minimum of the output-error surface.

I. INTRODUCTION

The input-output characteristic of linear systems is
classically described by a ratio of polynomials in shift operator
notation. However, there exist an infinite number of equivalent
descriptions (also referred to as realizations, representations, or
parameterizations) with the same external (input-output)
behavior, but different internal behaviors. These different
realizations have different sensitivity measures and different
numerical properties under finite-word-length conditions [1].
This has motivated researchers to explore the performance
advantages of different realizations in adaptive filtering [2,3,4].
Abundant literature may be found on the performance of adaptive
IIR filters based on "conventional" realizations such as the direct
forms and lattice structures.

There has always been a desire to use balanced realizations
for adaptive filtering due to many of its interesting properties
[2,5]. For example, a balanced realization is known to have the
least parameter sensitivity. This suggests that the balanced
realization will have good noise rejection characteristics (robust
in the presence of noise), since the wrong parameter estimates,
due to the misadjustment caused by noise, will describe a model
that is still close to the true system [2]. The balanced realization
minimizes the ratio of maximum-to-minimum eigenvalues of the
Grammian matrices. DeBrunner heuristically argues that this
property should lead to fast convergence of adaptive filters based
on a balanced realization [2]. Furthermore, the balanced
realization is very useful in model reduction [6]. Due to the
absence of a parameterization that can guarantee that the
realization stays balanced upon adaptation of the parameters,
researchers could not develop a balanced-realization based
adaptive filtering algorithm [2,5]. Ober filled this void in
balanced parameterization by developing a canonical
representation for balanced realizations [7]. In this paper, we
present an adaptive filtering algorithm based on Ober's
parameterization.

Section II describes the balanced realization. The balanced
parameterization is presented in Section III. An adaptive filtering
algorithm based on this parameterization is derived in Section IV.
The proposed algorithm is simulated using MATLAB and the
results are summarized in Section V. Section VI provides the
conclusion.

II. BALANCED REALIZATIONS

An Nth-order linear time-invariant (LTI) discrete system can
be described in state-space form by the following equations:
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where nu  and ny  are input and output, respectively. nx  is the

state vector and A, B, C, and D are system matrices of
appropriate dimensions. Different realizations of the same system
may be found via state transformations. That is, the quadruple

},,,{ 11 DCTBTATT −− , where T is any nonsingular matrix, also
has the same input-output behavior as (1). The state-space system
has controllability Grammian K  and observability Grammian W,
which are the solutions to the Lyapunov equations
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The realization is said to be in the balanced form
(sometimes internally balanced form is used), if the two
Grammians are diagonal and equal. That is

( )Ndiag σσσ ,,, 21 �== WK (3)

The positive diagonal elements Nσσσ ,,, 21 �  are usually

referred to as the Hankel singular values.

III. PARAMETERIZATION

Ober's parameterization [7] of the balanced realizations of
discrete-time systems is based on the corresponding
parameterization for continuous time systems. The balanced
continuous-time model is then transformed into its discrete-time
equivalent using the bilinear transformation. Fortunately, the
bilinear transformation preserves the observability and
controllability Grammians [7]. Hence, the resulting discrete-time
model is also in balanced form.

The balanced realization of an Nth-order stable, single-input
single-output (SISO), LTI continuous-time system with distinct
Hankel singular values is defined in terms of the parameters

( )TNNNBAL dssbb ,,,,,,, 111 ���σσθ = , where
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The Hankel singular values of any randomly chosen Nth-order
SISO, LTI plant will almost surely be distinct. Here, "almost
surely" means that the set of exceptions has Lebesgue measure
zero.

The inequality constraints shown in (4) render the
parameterization unique for a given system.  These parameters
are related to the system matrices },,,{ cccc DCBA  as follows

(here, we use the subscript c to emphasize the fact that the
underlying system is continuous):
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( ) [ ]TNBALc bbb �21=θB  (5b)

( ) [ ]NNBALc bsbsbs �2211=θC (5c)

( ) dBALc =θD (5d)

By direct substitution, it may be easily verified that the above set
of system matrices satisfies the continuous-time Lyapunov
equations
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where ( )Ndiag σσσ ,,, 21 �=Σ  is the Grammian matrix. Hence,

(5) constitutes a balanced realization. The bilinear transformation
of the system defined by the continuous-time system matrices in
(5) yields the equivalent discrete-time system defined by the
following system matrices (the subscript d is used to denote that
the underlying system is discrete):

( ) ( ) ( )ccBALd AIAIA +−= −1θ (7a)

( ) ( ) ccBALd BAIB 12 −−=θ (7b)

( ) ( ) 12 −−= ccBALd AICC θ (7c)

( ) ( ) ccccBALd BAICDD 1−−+=θ (7d)

where I  is the unit matrix of dimension NN × .

It has been proved that the bilinear transformation defined in (7)
preserves the observability and controllability Grammians and,
hence, continuous-time balanced systems are mapped to discrete-
time balanced systems under bilinear transformation [7].

IV. ADAPTIVE FILTERING ALGORITHM

This section will present the least mean squares (LMS)
based adaptation algorithm [8] to adapt the parameters BALθ  of

the balanced realization. We first derive the sensitivity formulas

that are needed for LMS adaptation. The following identity is
used frequently in deriving the gradients:
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The transfer function ( )zH  in terms of the state-space
system matrices is given by

( ) ( ) ddddBAL zzH DBAIC +−= −1;θ (9)

Using (8) and (9),
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From (7) and (8), the derivatives (with respect to the balanced
realization parameters BALθ ) of the discrete-time system matrices

needed in (10) are given by
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From (5), the non-zero derivatives of the continuous-time system
matrices that appear in (11) are given by
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Figure 1 shows the configuration of the state-space adaptive
filter. The adaptive filter attempts to minimize the mean-squared
error signal ne , which is the difference between the desired

output ny  and the estimated output nŷ .  That is,

nnn yye ˆ−= . (19)
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Figure 1. State-Space Adaptive Filter.

The LMS algorithm approximates the expected value of the
squared error signal using its instantaneous value. With such an
approximation, the parameter adaptation equation is given by
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is the gradient of the estimated output with respect to the
parameter vector. From (10) and (21), we recognize that this
gradient may be computed using a bank of state-space filters. The
structure of the gradient-computing filter is shown in Figure 2.
The system matrices corresponding to each block are indicated
within the block.
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Figure 2. Gradient-Computing Filter.

The following is a summary of the adaptive filtering algorithm.
1. Initialize 0θ . Repeat Steps (2)-(6) for 0>n .

2. Transform the balanced parameters nθ  into discrete-

time system matrices using (5) and (7).
3. Compute the estimate for output nŷ  using the state-

space equations as in (1).
4. Estimate the error ne in the estimate using (19).

5. Compute the gradient of the output with respect to the
parameters using (10) and (21).

6. Adapt the parameters using (20). Use any projection
technique [9] to ensure that the constraints in (4) are
satisfied.

Thus, (5), (7), (1), (19), (10), (21) and (20), in the specified order,
constitute the balanced-realization based LMS adaptation
algorithm.

The adaptive filtering algorithm presented above attempts to
minimize the mean-squared output error. The global minimum of
the output-error surface is known to give an estimate for the true
parameters of the system [5]. However, it is not easy to locate the
global minimum of the output-error surface due to the presence
of additional local minima, unless we have a "good" starting
point. We surmount this problem by using an equation-error (EE)
based adaptation algorithm [5] to obtain the initial estimate for
the parameters. That is, the stable, biased estimate obtained from
the equation-error based adaptive filter is used as the initial
estimate for the balanced-realization based (output-error
minimization) algorithm.



V. SIMULATION RESULTS

The proposed algorithm is simulated in MATLAB. The
plant to be modeled is a fourth-order elliptic low-pass filter (LPF)
with sf05.0  as cutoff frequency. We assume that 16,000 input-

output measurements (free of any measurement noise) from this
plant are available. The initial 4,000 data pairs are used to adapt
the equation-error based adaptive filter. The estimate obtained
from the equation-error adaptive filter is transformed into
balanced parameters. The latter 12,000 data pairs are used to
adapt the balanced-realization based adaptive filter. Figure 3
shows the learning curve, which is a plot of the output estimation
error vs. iteration number, for the adaptation algorithm. The true
and estimated magnitude responses (estimate obtained using
16,000 data samples) are shown in Figure 4. The difference
between the true and estimated magnitude responses is barely
noticeable.

Figure 5 shows the learning curve for the proposed
algorithm under the same conditions as above, but with a desired
signal that includes measurement noise at -29 dB resulting in a
signal-to-measurement-noise ratio of 20 dB. We find that the
steady-state MSE is -27.54 dB. Due to the presence of the
measurement noise in the desired signal, the mean-squared
estimation error is limited to -29 dB. The estimated magnitude is
shown in Figure 4.

Figure 3. Learning Curve of the Proposed Algorithm. (Plant:
4th Order Elliptic LPF)

Figure 4.  True and Estimated Magnitude Responses: (a)
True Response, (b) Initial Estimate (from EE method), and
Estimate from Proposed Algorithm (c) Noise-free case and

(d) SNR = 20 dB.

Figure 5. Learning Curve of the Proposed Algorithm. (Plant:
4th Order Elliptic LPF, Output SNR: 20 dB)

VI. CONCLUSION

The proposed algorithm attempts to minimize the mean-
squared output error. Hence, the resulting estimates are unbiased.
The problem of the existence of local minimums in the output-
error surface is surmounted by first using an equation-error based
adaptation algorithm, which provides a good initial estimate for
the parameters.

The balanced parameterization presented here inherently
ensures that the adaptive filter always remains stable. The
adaptation algorithm insures that the Hankel singular values are
always positive and this positivity, in turn, guarantees that the
system is stable. Consequently, the usual complex stability
checks are not needed while using our balanced-realization based
adaptive filter. The only drawback of this algorithm is its high
complexity. Development of a fast balanced-realization based
algorithm is needed.
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