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ABSTRACT

Subband adaptive filters have been used extensively in sys-
tem modeling configurations to model unknown systems
with large impulse responses. This paper will illustrate the
advantages of a non-uniform subband adaptive filter over
a uniform subband adaptive filter while giving insight to
subband bandwidth allocations for system modeling con-
figurations. By implementing small subbands which isolate
the transition regions in the unknown system, while using
larger subbands for other, more spectrally flat regions, one
can minimize convergence time and lower misadjustment.

1. INTRODUCTION

Subband adaptive filters were developed to combat the con-
vergence rate and computational complexity problems as-
sociated with large full-band adaptive filters. High order
adaptive filters are commonly needed in system modeling
applications such as acoustic echo cancellation [6]. A sub-
band adaptive filter in a system modeling configuration is
illustrated in Figure 1. In the figure, the unknown system is
denoted byh, the analysis and synthesis filters for thenth

subband arefn andgn respectively, and"D and#D denote
upsampling and downsampling by a factor ofD.

Traditionally, uniform filterbanks have been designed
for use with subband adaptive filters. To avoid computa-
tionally expensive adaptive cross-filters, oversampled filter-
banks are usually employed to reduce the amount of aliasing
between subbands [9]. However, oversampled filterbanks
decrease the spectral efficiency of the subbands thereby pre-
empting a slow asymptotic convergence rate [3, 12] in both
the subband mean-squared error (MSE) and the full-band
MSE. Some research has been done to improve the over-
all convergence rate for the oversampled subband adaptive
filtering system by implementing increased bandwidth fil-
terbank analysis filters [4, 6].

Non-uniform filterbanks open a new dimension of free-
dom for subband adaptive filtering, since the filterbank band-
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Figure 1: Non-uniform Subband Adaptive Filter System
Modeling Configuration

widths can now be adapted. Previous experimental results
have shown that non-uniform adaptive filterbanks may have
reduced MSE over uniform adaptive filterbanks [10]. This
paper presents a method for allocating bandwidths to the in-
dividual subband filters, such that the convergence time is
minimized. Experimental results also will show the advan-
tages of the non-uniform filterbank over the uniform.

2. NON-UNIFORM BANDWIDTH ALLOCATION

Non-uniform subbands could be allocated such that they fit
into two distinct categories. The first classification is for
spectrally flat subbands, while the second category distin-



guishes subbands with a transition. In this way, the un-
known spectrum is split into non-uniform subbands, such
that the spectrally flat subbands contain as much bandwidth
as possible, while the transition subbands contain as little
bandwidth as possible while still containing the entire tran-
sition band of the unknown filter.

In general, the spectral properties of the unknown fil-
ter are not known apriori. However, a uniform (or another
initial estimate) filterbank can be used to initially identify
properties of the unknown system and then be changed or
adapted afterwards. One can maintain estimates of the au-
tocorrelation sequences for the desired signals in each sub-
band (signalsy0 : : : yM-1 in Figure 1). This is given by

ryk (t) = �ryk(t� 1) + (1� �) + ~Ykyk (1)

where the autocorrelation vector ofyk at timet is denoted
by ryk (t) = [ryk (�L + 1) : : : ryk(L � 1)]T (ryk(n) is the
nth lag),yk = [yk(t) : : : yk(t�L+1)]T is the sequentially
time-delayed desired signal vector, and~Yk is the convo-
lution matrix such that~Ykyk computes the autocorrelation
vector foryk. The autocorrelation forgetting factor is given
by � where0 � � < 1. Updating the autocorrelation vec-
tor in this manner is similar to a rank-1 update for an auto-
correlation matrix [7, 14]. This process is effectivelyO(L)
multiplies, since only the multiplies concerning the most re-
cent sample,yk(t), need be computed. A zero-phase DFT
matrix could then be applied1 to the autocorrelation vector,
ryk(t), to obtain the power spectral density for thekth sub-
band [13, 14]. The bandwidth of the subband can then be
estimated by applying a simple threshold test to the power
spectral coefficients.

The resolution of the power spectral density is effec-
tively given byL. L should be chosen such that it is large
enough to provide meaningful spectral information, but small
enough such that it is computationally possible to compute
the DFT. Also, the oversampling must be taken into account.
The bandwidth estimations referred to in this paper, refer
to the bandwidths that would be measured if the subbands
were critically decimated.

Subbands that are bandlimited must contain a spectral
transition. These subbands need to be reduced in bandwidth
by giving bandwidth to neighboring spectrally flat subbands
to effectively isolate the transition. One can determine how
to reduce the bandwidth, by examining the subband’s power
spectral data.fk;1 should be increased for spectrally flat re-
gions before the transition andfk;2 should be decreased to
move spectrally flat regions after the transition to a neigh-
boring spectrally flat subband, wherefk;1 andfk;2 are the

1The DFT is aO(L2) operation. For more computational efficiency,
one could apply the FFT to the latter half of the autocorrelation sequence,
[ryk(0) : : : ryk (L � 1)]T , to give aO(L logL) operation assuming that
L is a power of 2. However, applying the operation to only the latter half of
the sequence, does produce some spectral smoothing which could possibly
confuse bandwidth estimates made from this sequence. [13, 14]

lower and higher�3dB cutoff frequencies for thekth analy-
sis filter respectively. Ideally, correctly fitted transition sub-
bands should only be as wide as the transition.

Full bandwidth subbands are spectrally flat. The band-
width for these subbands may be increased unless a sig-
nificant spectral transition occurs from the increased band-
width. Correctly fitted spectrally flat subbands should there-
fore be as large as possible without containing any spectral
transitions.

For example, a non-uniformfilterbank can be constructed
from uniform constituent filters simply by building a uni-
form filterbank with a large number of filters and adding
subsets of neighboring filters to form the desired subband
bandwidths as in [2]. By saving the constituent filterbank, it
is possible to modify the subband bandwidths easily, since
constituent filters need only to be added and subtracted from
the subband filters to exchange bandwidth between subbands.
It is sufficient to haveL equal to the number of constituent
filters incorporated into each subband for critical subsam-
pling. If the non-uniformfilterbank is degenerately uniform,
thenLwould be equal for each subband. Since subbands are
typically oversampled to avoid cross-filters, one may choose
to add more resolution to space the DFT points better within
the subbands’ passbands. Using significantly more resolu-
tion does not make sense, since the filterbank bandwidths
are inherently limited by the constituent filters.

If the filterbank can be adapted easily over time, as with
non-uniform banks constructed from constituent filters, then
the filterbank could be adapted repeatedly as needed. If the
unknown system is time-varying, then this would be a ne-
cessity for fast convergence. These ideas present an algo-
rithm to adapt the filterbank which is similar to RLS adap-
tive filtering, since it involves maintaining an estimate of a
current autocorrelation sequence. The adaptive algorithm
outlined in [10] presents a more LMS-like algorithm.

2.1. Transition Subband Convergence

For the subbands classified as transitional, these subbands
will converge quickly simply because the subbands are as-
sumed to contain small amounts of bandwidth. Since the
subbands are small, the subbands can be highly decimated,
as can the adaptive filter length. Small adaptive filters adapt
fast and are computationally efficient, since there are fewer
eigenvalue restrictions on step-size and fewer coefficients
require adaptation [7].

Compared to a uniform filterbank, most of the band-
width for the transition subbands has been given to neigh-
boring spectrally flat subbands. Uniform subbands which
contain a spectral transition typically are wider than the non-
uniform transition bands. The wider bands will typically
have similar input eigenvalue spreads, but may have more
subdominant eigenvalues than the tighter, non-uniform bands
[11]. Subdominant eigenvalues cause the wider, uniform



bans to converge slower than the tighter, non-uniform bands,
since coefficient convergence is primarily dependent on the
smallest input eigenvalue or slowest mode [7].

2.2. Spectrally Flat Subband Convergence

The spectrally flat subbands converge at the same rate as
a comparable uniform spectrally flat subband. The larger
non-uniform spectrally flat subband adaptive filters can be
viewed as a higher order version of the uniform subband
adaptive filter. This implies more input eigenvalues exist
that can limit the convergence rate. However, the eigen-
values are distributed in the same way as the uniform case,
since the input is essentially the same. Furthermore, with
similar input eigenvalue distributions, coefficient convergence
will be similar. Also, oversampling will generally induce
at least one small eigenvalue regardless of bandwidth [11]
which will effectively limit the convergence rate.

Since spectrally flat subbands will essentially adapt to
an impulse response, the coefficient vector is very sparse.
Sparse adaptive filters, or multi-tap adaptive delay filters,
may be used in these subbands to obtain faster convergence
with less misadjustment and with less computation than tra-
ditional adaptive filters, since only the most significant im-
pulse response coefficients are estimated [1, 8]. Recent work
has proposed an even faster algorithm for adaptive delay fil-
tering [15].

3. EXPERIMENTAL RESULTS

Figure 2 illustrates an “unknown” spectrum to model as well
as the non-uniform and uniform filterbank analysis filters.
214 samples of white, Gaussian noise were used to form the
input signal,x. The subbands were decimated bybBWk �
1:8c, where BWk represents the normalized bandwidth of
the kth analysis filter (fk;2�fk;1

fN
, wherefN is the Nyquist

frequency). The “unknown” filter was a512th order FIR
filter, and the subband adaptive filter was also512th order.
NLMS [7] adaptive filters were used in each subband with
� = 1.

The filterbank filters were constructed from a uniform
constituent filterbank [2] containing 40 constituent filters.
The constituent filters were formed by a complex exponen-
tially modulated prototype filter,p0, of 160 coefficients as
in [5]. The analysis and synthesis modulation equations are
given by equations (2) and (3) respectively, where�k =
�
4
(�1)k andN is the order of the prototype filter. The mod-

ulation equations simply complex-modulate the low-pass
prototype filter to each subband’s center frequency. The
phase adjustment of�k is needed to cancel neighboring sub-
band aliasing. For real input signals,n filters will form a
sufficient subband decomposition. However, for complex
input signals,2n filters are necessary to cover the entire

spectrum. This is essentially only a generalization from the
traditional pseudo-QMF cosine-modulation equations [16].

fk(n) = p0(n) exp

�
j�

M
(k + 0:5)(n�

N

2
) + j�k

�
(2)

gk(n) = p0(n) exp

�
j�

M
(k + 0:5)(n�

N

2
)� j�k

�
(3)

The MSE for the uniform and non-uniform filterbanks is
illustrated in Figure 3. The MSE data was averaged over 25
simulations (1 block =214 input samples). Figure 4 shows
the final adapted spectrums of the non-uniform and uniform
subband adaptive filters along with the “unknown” spec-
trum for 214 input samples. Table 1 shows MSE calcula-
tions averaged over the last fifth of the MSE data for214

and217 input samples.

214 samples 217 samples
Uniform 6:86� 10�3 6:98� 10�3

Non-Uniform 3:17� 10�4 2:12� 10�4

Table 1: Final MSE Comparison

Figure 4 illustrates misadjustments in the second and
fourth uniform subband which produce small peaks in the
spectrum at:4 and :6. The non-uniform subband adaptive
filter, which has tighter transition subbands converge with
less misadjustment and ultimately produces a lower MSE.

4. CONCLUSIONS AND FUTURE WORK

This paper has outlined a technique for allocating band-
width to non-uniform filterbank filters. By implementing
small transition subbands around the transitions in the un-
known system and larger spectrally flat subbands elsewhere,
MSE and computational complexity is minimized. An RLS-
like algorithm has been suggested to determine or adapt sub-
band bandwidths. Finally, experimental results were pre-
sented which show that a properly allocated non-uniform
subband adaptive filter can converge faster and with less
misadjustment than a uniform subband adaptive filter.

Future work will entail further studies of applications
with less ideal spectra. Analysis applied to systems with
no true spectrally flat regions must be performed to validate
this work towards general use. Also, further comparisons
will investigate an optimal number of subbands along with
an adaptive number of subbands. Work will also be done
to relate order-update adaptive algorithms to minimize sub-
band misadjustment.
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Figure 2: “Unknown” System and Associated Non-Uniform
and Uniform Filterbank Analysis Filters (M = 5)
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Figure 3: MSE for Uniform and Non-Uniform Subband
Adaptive Filters
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Figure 4: Adapted Spectra
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