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ABSTRACT

In this paper, we address 3D image stabilization using a frame-
work for the estimation of scene structure from a monocular mo-
tion field. We show that our algorithm rapidly and accurately de-
termines the focus of expansion(FOE) in an optical flow field. This
involves computing the least squareserror of a large system of equa-
tions without actually solving the equations, to generate an error
surface that describes the goodness of fit as a function of the hy-
pothesized FOE. Consequently, we recover the rotational motion
which we use to perform 3D image stabilization.

1. INTRODUCTION

Electronic image stabilization is a differential process that steadies
an image sequence acquired by a moving camera by compensating
for camera motion. Commonly, 2D image stabilization techniques
apply interframe translation, similarity, affine or perspective trans-
formation to stabilize the sequence. 2D techniques perform poorly
when the scene is richly structured in 3D and the camera motion is
not restricted to pan. When a 3D scene is being imaged by an un-
steady camera, the resulting image motion is a result of the camera
parallax motion (translation) as well as camera rotation. Since the
parallax shift cannot be compensated for and is often deliberate, it
is the rotation that is desired to be annulled. Unfortunately, the 3D
structure of the scene enters the equations and does not permit ro-
tation to be resolved independent of scene depth.

The extraction of 3D structure of a moving scene from a se-
quences of images is termed as the structure from motion (SFM)
problem. The solution to this problem is a key step in the monoc-
ular rangefinding, 3D image stabilization, obstacle avoidance and
time to collision. Mathematical analysis of SFM shows the nonlin-
ear interdependence of structure and motion given observations on
the image plane. While SFM has received considerable attention
by researchers, the proposed solutions tend to have several short-
comings. Algorithms that eliminate the depth field by cross multi-
plication [1, 2, 3, 4, 5, 6], are not very stable. Assuming smooth-
ness of the depth field or optical flow field is not always valid, more
so when there is noise or discontinuity in the flow estimates. Thus,
differentiating flow fields [7, 8] is unacceptable. Nonlinear opti-
mization based solutions [9, 10] are relatively stable in the presence
of noise. However, minimizing a nonlinear cost function exposes
the solution to the pitfalls of local minima and slow convergence.

In this paper, we present a fast partial search technique for lo-
cating the focus of expansion (FOE) of a motion field. The FOE
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is hypothesized to lie within a bounded square on the image plane.
For each candidate location on a discrete sampling of the plane, we
generate a linear system of equations for estimating the remaining
unknowns which are the rotational velocity and inverse depth map.
We compute the least squares error of the system without actually
solving the equations, to generate an error surface that describes
the goodnessof fit as a function of the hypothesizedfocus of expan-
sion. The minimum of the error surface occurs at a discrete location
very close to the true FOE. We use this FOE estimate to compute
the rotation for performing 3D stabilization. Since the linear sys-
tem used to solve for depth and rotation at each candidate location
of the FOE is stable, bounded perturbances in the optical flow es-
timates lead to a deterministic, bounded offset of the error surface
minimum from zero. Thus, noise resilience is inherent to this linear
formulation.

This paper is organized as follows: the SFM problem is for-
mulated in section 2 and an outline of our approach is presented in
section 3. We discuss the application of our SFM solution to 3D
stabilization with an experiment in section 4.

2. PROBLEM FORMULATION

Assuming a camera centered coordinate system with linear dimen-
sions normalized by the focal length i.e. f = 1, the optical flow
u(x; y), v(x; y) observed on the image plane is related to the 3-D
translation t = (tx; ty; tz), rotation ! = (!x; !y; !z) and scaled
inverse depth map h(x; y) = tz

Z(x;y) according to

u(x; y) = �(x� xf )h(x; y) + xy!x � (1 + x
2)!y + y!z

v(x; y) = �(y � yf )h(x; y) + (1 + y
2)!x � xy!y � x!z (1)

where (xf ; yf)
def
= ( txtz ;

ty
tz
) is known as the focus of expansion

(FOE). The nonlinear coupling of the unknown depthmap h(x; y)
with translation t precludes a simple solution to (1). Many tech-
niques build on eliminating h(x;y) from (1) by cross multiplica-
tion, but this step gives rise to product terms of unknowns, and ren-
ders the solution very sensitive to noise in flow estimates. How-
ever, if the focus of expansion is estimated reasonably well, the re-
maining unknownsare recovered by solving an overdetermined set
of linear equations, which is a well-conditioned process. The tech-
nique we propose in this paper locates the FOE within a bounded
search space in an accurate and computationally efficient manner,
given an input optical flow field.



2.1. Partial Search

Suppose the nonlinear set of equations for which a solution is de-
sired is given by

f(x) = 0; x 2 <M ;0 2 <K; K �M (2)

Exhaustive searchof a solutionxe involves (i) enumerating a finite
set of candidate solutionsX = fx0;x1; : : :g that adequately cover
the solution space, (ii) computing an error metric (e.g. kf(xi)k2)
which associateseach candidatesolutionxi with a compliance mea-
sure and (iii) locating the minimum error and corresponding can-
didate solution, which for the squared error metric is

xe = argmin
x2X

fkf(x)k2g

In general, the order of complexity of exhaustive search is propor-
tional to jX j, which can get unmanageably large as the dimension-
ality M of x increases.

Another approach to searchingfor all the componentsof the so-
lution is to enumerate only a few components and solve for the re-
maining components based on the hypothesis. For example in (2),
assume that the argumentx can be partitioned asx0 = (a0 b0);a 2
<M1 ;b 2 <M2 ;M1 +M2 = M and given ai , (2) can be solved
for the remaining components bi with a small number of compu-
tations. We define a as the search component and b as the depen-
dent component of x. Partial search of a solution xp is performed
by (i) enumerating a finite set of candidate partial solutions A 2
fa0;a1; : : :g that adequately cover the search component space,
(ii) computing the dependentcomponentbi corresponding to each
ai 2 A that closely satisfies (2), (iii) computing an error met-
ric, for example kf([a0i b

0
i]
0)k2 for the squared error case and (iv)

picking the candidate solution corresponding to the minimum er-
ror. Step (ii) can be defined as a minimization over the continuous
space of permissible b of the same squared error metric to formu-
late the partial search solution xp0 = (a�0 b�0) as

a
� = arg min

a2A
min
b

������f �ab�������2 and b
� = arg min

b

������f �a�b�������2

Partial search separates the problem into a search and a minimiza-
tion. In general, the complexity of the original problem is propor-
tional to the cardinality jAj of A, and to the number of operations
required to computebi givenai . In specific situations, as in the ap-
proach used here, the search complexity can be reduced even fur-
ther by not explicitly evaluating b� for every a�.

3. APPROACH

Let the true FOE be (xf ; yf ). Assuming that the flow field is of
size N � N and all N2 flow estimates are available, the optical
flow at pixel location i; j 2 f0; 1; : : : ;N � 1g2 is given by

ui;j = �(xi;j � xf )hi;j + xi;jyi;j!x � (1 + x
2
i;j)!y + yi;j!z

vi;j = �(yi;j � yf )hi;j + (1 + y
2
i;j)!x � xi;jyi;j!y � xi;j!z

where xi;j = i�(N�1)=2
f

, yi;j = j�(N�1)=2
f

, and fh; u; vgi;j =

fh; u; vg(xi;j; yi;j). Define

ri;j = (xi;jyi;j � (1 + x
2
i;j) yi;j)

0

si;j = (1 + y
2
i;j � xi;jyi;j � xi;j)

0

Q = [r0;0 s0;0 r0;1 : : : sN�1;N�1]
0

h = �(h0;0 h0;1 : : : hN�1;N�1)
0

u = (u0;0 v0;0 : : : vN�1;N�1)
0

P(xf ; yf ) =

2
6664

x0;0 � xf

y0;0 � yf

. . .
xN�1;N�1 � xf
yN�1;N�1 � yf

3
7775

A(xf ; yf ) =
�
P(xf ; yf) Q

�

x0 =

�
h

!

�
:

This allows us to consolidate the motion equations for all individual
flow vectors in the brief form

�
P(xf ; yf)Q

� � h

!

�
= A(xf ; yf ) x0 = u:

Replacing the unknowns xf ; yf and x0 by the hypothesized vari-
ables xh; yh and x we get the general condition

A(xh; yh) x! u (3)

where the true solution exactly satisfies (3). We now definea squared
error cost function C(xh; yh;x) = kA(xh; yh) xk

2
2 . Since

C(xh; yh;x) � 0 and C(xf ; yf ;x0) = 0 (4)

(i) the true solution to the system (3) minimizes the cost function
C( ) and (ii) all minimizers of C( ) satisfy (4) exactly. Thus, we
have reduced the original problem to

min
xh ;yh;x

C(xh; yh;x) = min
xh ;yh

min
x

C(xh; yh;x) (5)

The inner minimization occurs at the least squares (LS) solution
xLS of A(xh; yh) x ! u. It is not difficult to see that even
with coarse discretization, the number of free variables is too large
to permit exhaustive search. Referring to x2.1, we see that partial
search is an ideal technique for solving (5).

In order to perform partial search, we set fxh; yhg to be the
search component and x to be the dependent component. We dis-
cretize the search component space at midway locations between
four pixels over the entire image area, in line with our (relaxable)
assumption that the FOE lies within the image. The LS solution
xLS of A(xh; yh) x ! u satisfies A0AxLS = A0u where the
arguments ofA has been dropped. Define diagonal matrix

D = P
0
P = Diag

�
�x2i + �y2i

	
where �xi and �yi are functions of (xh; yh)

�xi = xbi=Nc;i modN � xh and �yi = ybi=Nc;i mod N � yh

WhenD is nonsingular,xLS is unique. Introducing matricesM 2
<2N�2N and M̂ 2 <3�3 defined as

M = (I�PD�1
P
0) and M̂ = Q

0
MQ (6)

we get

x =

�
D�1P0(I�QM̂�1Q0M)

M̂�1Q0M

�
u (7)

The squared error can be shown to simplify to

kAx � uk2 = u
0
Mu� u0MQM̂

�1
Q
0
Mu (8)



The obvious strategy of computing the least squared error, or
equivalently, of performing the inner minimization in (5), is to ex-
plicitly solve the linear system for the unknown x and use this es-
timate to evaluate the squared error. Even after taking into account
the sparsenessofA, the overall complexity including the outer min-
imization search is an unacceptably high O(N4). The crux of our
algorithm lies in the fact that we can further exploit the structure
of A so that the errors can be computed directly, without comput-
ing the solution x explicitly. Moreover, the least squared errors
for all the candidate hypotheses can be computed in a single step
using Fourier techniques, which leads to an overall complexity of
O(N2 logN). While this seems incredible at the first sight since
factoring outN2 from the complexity introduced by the outer search
leavesO(logN) - a quantity insufficient even for vector addition,
it is the simultaneousestimation of all errors in the search space that
allows such a low overall complexity. Proof and details of our al-
gorithm are presented together with an in-depth evaluation in [11].

4. 3D STABILIZATION

Stabilization is a differential process that compensates for the “un-
wanted” motion in an image sequence,which in typical situations is
the rotational motion of the camera with respect to an inertial frame
of reference. Stabilization of an image sequence is important for
improving the throughput of a human or an automatic algorithm ex-
amining the sequence for “targets”. Image stabilization is also an
important step for motion super-resolution, which is the process of
enhancing the resolution of an image from multiple shifted views
of the scene. Videocompression is yet another application of stabi-
lization. 2D image stabilization algorithms that employ interframe
shift, similarity, affine or perspective transformations perform poorly
when there is significant depth variation and camera translation.

The first step in image stabilization is the computation of the
motion field. Since our emphasis here is on the recovery of rota-
tion (as opposed to recovery of depth) we choose the modeled opti-
cal flow algorithm [12] for computing the motion field. This tech-
nique has the advantage of accuracy and speed at the expense of
yielding a flow field described by a low order model, which is not
a disadvantage for recovering rotation. Next, the FOE estimation
algorithm proposed here is applied to the computed flow field and
the location corresponding to the minimum error in (8) is picked
as the FOE (x̂; ŷ). A correction of 1

2 pixel is applied to each direc-
tion, to undo the effect of staggering. Once the FOE is estimated,
the corresponding angular velocity is available with no extra com-
putations.

Figs. 1 (a) and (b) show the first and hundredth frames of the
Martin Marietta sequence. The camera is mounted looking ahead
on a vehicle as it traverses unpaved terrain. There is sufficient tex-
ture in most of the image, and the interframe displacementsare small,
permitting differential optical flow computation. The FOE and ro-
tation angles are computedusing our algorithm. The estimated pitch,
yaw and roll plots are shown in Figs. 1 (c), (d) and (e) respectively.
These are in excellent visual compliance with the results obtained
by Yao [13].

Fig. 2 demonstrates the effect of 3D stabilization - (a) shows
the twentieth frame of the sequence. We chose this frame as it dis-
plays higher than average angular deviation from the first frame.
With no stabilization, the difference between the twentieth and first
frames is shown in Fig. 2(b). The fully stabilized image (compen-
sated for roll, pitch and yaw) and its difference from the first frame
are shown in Figs. 2(c) and (d) respectively. In the difference im-

age, areas near the camera show larger deviations than those at a
distance. This is the effect of translation of the camera.

Since our algorithm actually computes the three rotation angles
for each frame, we can go one step further to perform “selective sta-
bilization”. For instance, if we wish to compensate only for cam-
era roll, we disregard the effects of pitch and yaw while derotat-
ing the frames. Fig. 2(e) shows the twentieth frame of the Martin
Marietta sequence, stabilized for roll only. The difference from the
first frame is shown in Fig. 2(f). The parallel horizon and mountain
profile in this figure reveals the unstabilized pitch and yaw motion.
Extending this concept, one can selectively stabilize for certain fre-
quencies of motion to eliminate handheld jitter while preserving
deliberate camera pan, etc.

Although 3D SFM has received much attention over the years
a fast and accurate solution has evadedresearchers. We believe that
the approach presented here by us is a satisfactory solution to this
challenging problem. In conclusion, our solution using fast partial
search of the FOE proves to work well in the application area of 3D
image stabilization.
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Figure 1: 3D Stabilization: (a) first and (b) hundredth frame of Martin Marietta sequence, (c) pitch, (d) yaw and (e) roll as a function of
frame number

(a) (c) (e)

(b) (d) (f)

Figure 2: 3D Stabilization: (a) twentieth frame of Martin Marietta sequence, (b) difference between first and twentieth frame with no stabi-
lization, (c) fully stabilized twentieth frame, (d) stabilized difference, (e) stabilized only for roll, (f) difference between roll-stabilized frame
and the first frame of the sequence


