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ABSTRACT

In this paper, we address 3D image stabilization using aframe-
work for the estimation of scene structure from a monocular mo-
tion field. We show that our algorithm rapidly and accurately de-
terminesthe focusof expansion(FOE) in an optical flow field. This
involvescomputing theleast squareserror of alarge systemof equa-
tions without actually solving the equations, to generate an error
surface that describes the goodness of fit as a function of the hy-
pothesized FOE. Consequently, we recover the rotational motion
which we use to perform 3D image stabilization.

1. INTRODUCTION

Electronic image stabilization is adifferential processthat steadies
animage sequenceacquired by a moving cameraby compensating
for cameramotion. Commonly, 2D image stabilization techniques
apply interframe translation, similarity, affine or perspectivetrans-
formation to stabilize the sequence. 2D techniquesperform poorly
when the sceneisrichly structured in 3D and the cameramotionis
not restricted to pan. When a 3D sceneis being imaged by an un-
steady camera, the resulting image motion is aresult of the camera
parallax motion (translation) as well as camerarotation. Since the
parallax shift cannot be compensated for and is often deliberate, it
istherotation that is desired to be annulled. Unfortunately, the 3D
structure of the scene enters the equations and does not permit ro-
tation to be resolved independent of scene depth.

The extraction of 3D structure of a moving scene from a se-
quences of images is termed as the structure from motion (SFM)
problem. The solution to this problem is akey step in the monoc-
ular rangefinding, 3D image stabilization, obstacle avoidance and
timeto collision. Mathematical analysisof SFM showsthe nonlin-
ear interdependenceof structure and motion given observationson
the image plane. While SFM has received considerable attention
by researchers, the proposed solutions tend to have several short-
comings. Algorithms that eliminate the depth field by cross multi-
plication [1, 2, 3, 4, 5, 6], are not very stable. Assuming smooth-
nessof thedepth field or optical flow fieldisnot alwaysvalid, more
so when there is noise or discontinuity in the flow estimates. Thus,
differentiating flow fields [7, 8] is unacceptable. Nonlinear opti-
mization based solutions|[9, 10] arerelatively stableinthe presence
of noise. However, minimizing a nonlinear cost function exposes
the solution to the pitfalls of local minima and slow convergence.

In this paper, we present a fast partial search techniquefor lo-
cating the focus of expansion (FOE) of a motion field. The FOE
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is hypothesizedto lie within a bounded square on the image plane.
For each candidatelocation on a discrete sampling of the plane, we
generate alinear system of equationsfor estimating the remaining
unknownswhich aretherotational velocity and inverse depth map.
We compute the least squares error of the system without actually
solving the equations, to generate an error surface that describes
thegoodnessof fit asafunction of the hypothesizedfocus of expan-
sion. Theminimum of the error surfaceoccursat adiscretelocation
very close to the true FOE. We use this FOE estimate to compute
the rotation for performing 3D stabilization. Since the linear sys-
tem used to solve for depth and rotation at each candidate location
of the FOE is stable, bounded perturbancesin the optical flow es-
timates lead to a deterministic, bounded offset of the error surface
minimum from zero. Thus, noiseresilienceisinherent to thislinear
formulation.

This paper is organized as follows: the SFM problem is for-
mulated in section 2 and an outline of our approachis presented in
section 3. We discuss the application of our SFM solution to 3D
stabilization with an experiment in section 4.

2. PROBLEM FORMULATION

Assuming a camera centered coordinate system with linear dimen-

sions normalized by the focal lengthi.e. f = 1, the optical flow

u(z, y), v(z, y) observed on the image planeisrelated to the 3-D

translation ¢t = (t.,ty,t-), rotation w = (ws, wy,w.) and scaled
ty

inverse depthmap i(z, y) = e according to

w(z,y) = —(z —xp)h(z,y) + syws — (1 + x2)wy + yw.
v(z,y) = —(y —yp)h(z,y) + (1 + ¥ )wa — zywy — 2w (1)

where (2, yy) S (L, 1y is known as the focus of expansion

t:) ts

(FOE). The nonlinear coupling of the unknown depthmap A (z, y)
with translation ¢ precludes a simple solution to (1). Many tech-
niques build on eliminating 2(z, y) from (1) by cross multiplica-
tion, but this step givesrise to product terms of unknowns, and ren-
ders the solution very sensitive to noise in flow estimates. How-
ever, if thefocus of expansionis estimated reasonably well, there-
maining unknownsare recovered by solving an overdetermined set
of linear equations, which is awell-conditioned process. Thetech-
nique we propose in this paper locates the FOE within a bounded
search spacein an accurate and computationally efficient manner,
given an input optical flow field.



2.1. Partial Search

Suppose the nonlinear set of equations for which a solution is de-
sired isgiven by

fx)=0, xeRMo0eR " K>M %)
Exhaustivesearchof asolutionx. involves(:) enumeratingafinite
set of candidatesolutions ¥ = {xo, x1, ...} that adequately cover
the solution space, (i) computing an error metric (e.g. ||f(x:)||*)
which associateseach candidatesolution x; with acompliancemea-
sure and (z:z) locating the minimum error and corresponding can-
didate solution, which for the squared error metric is

e = 1 f 2
X argxmelg{ll (x)[I°}

In general, the order of complexity of exhaustive searchis propor-
tional to ||, which can get unmanageably large asthe dimension-
ality M of x increases.

Another approachto searchingfor all the componentsof the so-
lution is to enumerate only afew componentsand solve for the re-
maining componentsbased on the hypothesis. For examplein (2),
assumethat the argument x can bepartitionedasx’ = (a’ b'),a €
KM b e RM2 My, + M, = M and given a, (2) can be solved
for the remaining components b; with a small number of compu-
tations. We define a as the search component and b as the depen-
dent component of x. Partial search of asolution x;, is performed
by (7) enumerating a finite set of candidate partial solutions. A €
{ao, a1, ...} that adequately cover the search component space,
(#¢) computing the dependent component b; correspondingto each
a; € A that closely satisfies (2), (¢iz) computing an error met-
ric, for example ||f([a] b!]’)||* for the squared error caseand (iv)
picking the candidate solution corresponding to the minimum er-
ror. Step (z¢) can be defined asaminimization over the continuous
space of permissible b of the same squared error metric to formu-
late the partial search solutionx,’ = (a*’ b*') as

(%)

()
Partial search separatesthe problem into a search and a minimiza-
tion. In general, the complexity of the original problem is propor-
tional to the cardinality |.4| of .4, and to the number of operations
requiredto computeb; givena,. In specificsituations, asinthe ap-
proach used here, the search complexity can be reduced even fur-
ther by not explicitly evaluating b* for every a*.
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* . .
a = arg min min

and b" = arg min
acA b b

3. APPROACH

Let the true FOE be (x4, y). Assuming that the flow field is of
size N x N and all N? flow estimates are available, the optical
flow at pixel location i, j € {0,1,..., N —1}? isgivenby

Uij = —(Tiy — o )hiy + Tisyiwe — (14 7512,])""2/ + Yigw
Vig = —(Yi; —ys)hiy +(1+ ?/124)"% T T Yl gWy — TajWx
wherez; ; = M, Yij = %’ and {h, u,v};; =

f
{h’ U, U}(xi7j’ ym). Define
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rig = (Tiu; —(1+ xi,g) ym)'

sij = (L4ul; —zisyiy —xiy)
Q = [Toyo 80,0 70,1 - - - 5N—1,N—1]/

= —(hooho1 ... hv—i,vo1)
= (u070 V0,0 ... UN—l,N—l)/
B 1’070 b l’f
Y0,0 — Ys
P(xf’yf) =
IN-1,N—-1 —&f
L YN-1,N—1 — Yf
A(zs,y5) = [ Plerys) Q]
- L :|
Xo = w .

Thisallowsusto consolidatethe motion equationsfor all individual
flow vectorsin the brief form

[ P(ff,yf)Q ] |: Z :| =A(xf,yf) Xo = Uu.

Replacing the unknowns « ¢, ¥ and xo by the hypothesized vari-
ableszn, y» and x we get the general condition

A(xh,yh) X —1u (3)

wherethetrue solution exactly satisfies(3). Wenow defineasquared
error cost function C(zr, yr,x) = ||A(zh, yx) x||3. Since

C(xh,yh,X)ZO and C(xf,yf,xo)zﬂ (4)

(1) the true solution to the system (3) minimizes the cost function
C'( ) and (i¢) all minimizers of C( ) satisfy (4) exactly. Thus, we
have reduced the original problem to

min C(&h,yn,x) = min min C(zh, yr, X) (5)
Th Up X ZThHp X
The inner minimization occurs at the least squares (LS) solution
xrs Of A(zp,yn) x — u. Itisnot difficult to see that even
with coarse discretization, the number of free variablesistoo large
to permit exhaustive search. Referring to §2.1, we see that partial
searchis anideal technique for solving (5).

In order to perform partial search, we set {z, y»} to be the
search component and x to be the dependent component. We dis-
cretize the search component space at midway locations between
four pixels over the entire image area, in line with our (relaxable)
assumption that the FOE lies within the image. The LS solution
XrLs of A(xh, yh) X — 1u satisfiesA’Ast = A'u where the
arguments of A has been dropped. Define diagonal matrix

D =P'P =Diag {7} + 7, }
where &; and g; arefunctions of (z#, yx)

Ti = T[i/N],i mod N — Th aANA §i = Y[i/N],i mod N — Yn
When D isnonsingular, x . s isunique. Introducing matrices M €
RN and M € ®7*? defined as

M= (I-PD'P') and M =Q'MQ (6)
we get
D'P(I- QM'Q'M)
M-'Q'M
The squared error can be shown to simplify to

u @)

|Ax — u* = u'Mu — u'MQM ' Q'Mu ®



The obvious strategy of computing the least squared error, or
equivalently, of performing the inner minimization in (5), isto ex-
plicitly solve the linear system for the unknown x and use this es-
timate to evaluate the squared error. Even after taking into account
the sparsenessof A, the overall complexity including the outer min-
imization searchis an unacceptably high O( N*). The crux of our
algorithm lies in the fact that we can further exploit the structure
of A sothat the errors can be computed directly, without comput-
ing the solution x explicitly. Moreover, the least squared errors
for all the candidate hypotheses can be computed in a single step
using Fourier techniques, which leads to an overall complexity of
O(N?log N). While this seemsincredible at the first sight since
factoring out N2 from the complexity introduced by the outer search
leaves O(log V) - aquantity insufficient even for vector addition,
itisthesimultaneousestimation of all errorsin the search spacethat
allows such alow overall complexity. Proof and details of our al-
gorithm are presented together with an in-depth evaluationin [11].

4. 3D STABILIZATION

Stabilization is adifferential processthat compensatesfor the “un-
wanted” motion in animage sequence, whichin typical situationsis
therotational motion of the camerawith respectto aninertial frame
of reference. Stabilization of an image sequenceis important for
improving thethroughput of ahuman or an automatic algorithm ex-
amining the sequencefor “targets’. Image stabilization is also an
important step for motion super-resolution, which is the process of
enhancing the resolution of an image from multiple shifted views
of the scene. Videocompressionis yet another application of stabi-
lization. 2D image stabilization algorithms that employ interframe
shift, similarity, affineor perspectivetransformations perform poorly
when there is significant depth variation and camera translation.

The first step in image stabilization is the computation of the
motion field. Since our emphasis here is on the recovery of rota-
tion (as opposedto recovery of depth) we choosethe modeled opti-
cal flow algorithm [12] for computing the motion field. This tech-
nique has the advantage of accuracy and speed at the expense of
yielding aflow field described by alow order model, which is not
a disadvantage for recovering rotation. Next, the FOE estimation
algorithm proposed here is applied to the computed flow field and
the location corresponding to the minimum error in (8) is picked
asthe FOE (, ¢). A correction of % pixel isapplied to each direc-
tion, to undo the effect of staggering. Once the FOE is estimated,
the corresponding angular velocity is available with no extracom-
putations.

Figs. 1 (a) and (b) show the first and hundredth frames of the
Martin Marietta sequence. The camerais mounted looking ahead
on avehicle asit traverses unpaved terrain. Thereis sufficient tex-
turein most of theimage, and the interframe displacementsare small,
permitting differential optical flow computation. The FOE and ro-
tation anglesare computed using our algorithm. Theestimated pitch,
yaw androll plotsare shownin Figs. 1 (c), (d) and (€) respectively.
These arein excellent visual compliance with the results obtained
by Yao [13].

Fig. 2 demonstrates the effect of 3D stabilization - (a) shows
the twentieth frame of the sequence. We chosethis frame asit dis-
plays higher than average angular deviation from the first frame.
With no stabilization, the difference between the twentieth and first
framesis shownin Fig. 2(b). Thefully stabilized image (compen-
sated for roll, pitch and yaw) and its difference from the first frame
are shownin Figs. 2(c) and (d) respectively. In the difference im-

age, areas near the camera show larger deviations than those at a
distance. Thisisthe effect of translation of the camera.

Since our algorithm actually computesthethree rotation angles
for eachframe, we can go onestep further to perform “ selectivesta-
bilization”. For instance, if we wish to compensate only for cam-
eraroll, we disregard the effects of pitch and yaw while derotat-
ing the frames. Fig. 2(e) shows the twentieth frame of the Martin
Marietta sequence, stabilized for roll only. Thedifference from the
first frameisshownin Fig. 2(f). The parallel horizon and mountain
profilein this figure reveal sthe unstabilized pitch and yaw motion.
Extendingthis concept, one can selectively stabilize for certain fre-
quencies of motion to eliminate handheld jitter while preserving
deliberate camera pan, etc.

Although 3D SFM has received much attention over the years
afast and accurate solution has evadedresearchers. Webelievethat
the approach presented here by us is a satisfactory solution to this
challenging problem. In conclusion, our solution using fast partial
search of the FOE provesto work well in the application areaof 3D
image stabilization.

5. REFERENCES

[1] R.Y.Tsai and T.S. Huang. Estimating 3-d motion parameters
of arigid planar patchi. ASSP, 29(12):1147-1152, December
1981.

[2] X. Zhuang, T.S. Huang, N. Ahuja, and R.M. Haralick. A
simplified linear optical flow-motion algorithm. CVGIP,
42(3):334-344, June 1988.

[3] X.Zhuang, T.S. Huang, N. Ahuja, and R.M. Haralick. Rigid
body motion and the optic flow image. In CAIA84, pages
366375, 1984.

[4] A.M. Waxman, B. Kamgar-Parsi, and M. Subbarao. Closed-
form solutions to image flow equations for 3d structure and
motion. 1JCV, 1(3):239-258, October 1987.

[5] A. Mitiche, X. Zhuang, and R.M. Haralick. Interpretation
of optical flow by rotational decoupling. In CVWS87, pages
195-200, 1987.

[6] N.C.GuptaandL.N. Kanal. 3-d motion estimation from mo-
tion field. Al, 78(1-2):45-86, October 1995.

[7]1 H.C.Longuet-Higginsand K. Prazdny. The interpretation of
amoving retinal image. RoyalP, B-208:385-397, 1980.

[8] A.M. Waxman and S. Ullman. Surface structure and three-
dimensional motion from image flow kinematics. |JRR,
4(3):72-94, 1985.

[9] A.R. Bruss and B.K.P. Horn. Passive navigation. CVGIP,
21(1):3-20, January 1983.

[10] G. Adiv. Determining 3-d motion and structure from optical
flow generated by several moving objects. PAMI, 7(4):384—
401, July 1985.

[11] S. Srinivasan. Extracting structurefrom optical flow usingthe
fast error search technique. Technical Report CAR-TR-893,
Univ. of Maryland, 1998.

[12] S. Srinivasan and R. Chellappa. Optical flow using over-
lapped basisfunctionsfor solving global motion problems. In
ECCV98, 1998.

[13] V. S. Yao. Electronic Stabilization and Feature Tracking in
Long Image Sequences. PhD thesis, Univ. of Maryland, 1996.
available as Tech. Rep. CAR-TR-790.



/A}ﬁ N | /\
1 AT AN \
i LN / [l N . \
T | M\ / : FoA
ERRE TR | IBRRARRY.
(© (d) (e)

Figure 1: 3D Stabilization: (a) first and (b) hundredth frame of Martin Marietta sequence, (c) pitch, (d) yaw and (€) roll as afunction of
frame number

(b) (d) ()

Figure 2: 3D Stabilization: (a) twentieth frame of Martin Marietta sequence, (b) difference between first and twentieth frame with no stabi-
lization, (c) fully stabilized twentieth frame, (d) stabilized difference, (e) stabilized only for rall, (f) difference betweenroll-stabilized frame
and the first frame of the sequence



