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ABSTRACT
This paper introduces a multi-Principal-Distribution-Model
(PDM) method and Hidden Markov Model (HMM) for gesture
image sequence interpretation. To track the hand-shape, it uses
the PDM model which is built by learning patterns of variability
from a training set of correctly annotated images. For gesture
recognition, we need to deal with a large variety of hand-shape.
Therefore, we divide all the training hand shapes into a number of
similar groups, with each group trained for an individual PDM
shape model.  Finally, we use the HMM to determine model
transition among these PDM shape models. From the model
transition sequence, it can identify the continuous gestures
denoting one-digit or two-digit numbers.

1. Introduction

Gestures have been widely used by human being.  Gesture
input aims to exploit this natural expertise for human-computer
interface.  If the machine can understand the human gesture either
static or dynamic effectively, then it will greatly benefit us human
being.  In the last several years, there has been an increased
interest in trying to introduce human-machine interaction through
human body motion that coincides with a growing interest in a
closely related field - virtual reality. Pavlovic et al. [1] presented
a review of the most recent works related to hand gesture
interface techniques: glove-based technique[2] and vision-based
technique[3-9].  The vision-based technique is the most natural
way of constructing a human-computer interface which has many
applications.  However, it has difficulties in (1) segmentation of
the moving hands; (2) tracking and analyzing the hand motion;
and (3) recognition.

This paper presents a multi-PDM-based method for hand
tracking and handshape extraction, and then generates an ordered
sequence of model transitions by using the hidden Markov
Model(HMM). The PDM-based hand shape extraction is resistant
to complex background influence, and the model transition is
invariant to the non-uniform changes in speed and viewing
direction. Our method has the advantage that the gesture
recognition depends on how the system makes the PDM model
transition instead of how exactly it reaches a certain position in 3-
D space. Our goal is to convert the variances of the gesture in the
spatio-temporal space into a sequence of PDM model transitions
as a gesture symbolical representation.

The gesture recognition technique includes tracking the
object of interest and identifying the non-rigid hand-shape. The
major assumption for a successful tracking algorithm is that the 2-
D shape of the moving hand-shape changes smoothly between

two consecutive frames. The system has two stages: (1) multi-
PDM-based hand-shape tracking and measurement, (2) HMM-
based PDM model transition determination.  First, we find that
the PDM  method can only fit new hand examples similar to
shapes of the corresponding training set. Since there are so many
different hand shapes with lots of varieties, we need to divide all
the hand shapes into a number of similar groups, with each group
trained for an individual PDM model. Second, for each frame,
with the observation of the fitness function, we apply HMM to
determine the PDM model transition. The model transition is
required when the current flexible model is no longer suitable for
a large variation of the hand-shape in the following frames.

2. Shape Model and Feature Points Interaction

Here, we modify the Active Shape Model[10](or Point
Distribution Model(PDM)) method to extract the hand shapes.
For PDM, the average example is calculated and the deviation of
each example from the mean is established. A principal
component analysis of the covariance matrix of deviations reveals
the main mode of variation. Usually only a small number of
model parameters is required to reconstruct the training examples.

We may generate new examples of the shape, which will
be similar to those in the training set, by varying the parameters
within certain limits. The mean shape model is placed in the
image, and is allowed to interact dynamically until it fits to the
location of a newly suggested position for each model point based
on the matching of the local intensity model. By varying the
shape parameters that are consistent with the training set, we can
find the best shape model fitted with the real shape in the image.

We manually locate the feature points on the training set
images by following some rules to ensure that each point plays an
essential role on the boundary of the images (see Fig. 1). This
will ensure the coherence of points on the different features. We
call these points “landmark points”.

Given a current shape position X (with centroid Xc), we
need to adjust the global shape variation(including the translation
dXc = (dXc, dYc), rotation dθ, the scale ds) and the local shape
variation db to find the next fitting position X+dX as,

       X+dX=(Xc+dXc)+M((s+ds), (θ+dθ))⋅[ x + P⋅(b+db)]        (1)

where M(s, θ) is a 2 ×2 rotation matrix.  By finding gray-level
profiles of every point j on X+dX (xj∈X+dX) as gj , we calculate
the gray-level profile fitness value F(xj) and find the overall F
values (i.e., ΣjF(xj) for xj∈X+dX ) of all landmark points.  If the
ΣjF(xj) is minimized then the position X+dX indicates the best
fitted shape.  In the following, we illustrate a modified PDM-



based fitting process.
1) Initial Hand Model Position Estimation.  In the hand-shape
extraction process, we may encounter the problem that if the
positions of some fitting points are too far away from the actual
positions, then the adjustment may require a lot of iterations to
pull the landmarks points to the proper place. Therefore, we apply
frame difference operation to find the moving regions one of
which is supposed to be the moving hand. From these extracted
regions, we can roughly estimate the position of the hand to place
the initial PDM shape model.
2) Shape Adjustment Process.  Here, we apply the two-step
estimations for the global shape variation parameters (i.e., the
translation dXc, the rotation dθ, the scale ds ) and the local shape
variation parameter (i.e., db ).  First, we assume that the current
global shape is X, then we can do the global shape variation for
the new global shape as X+dX = M(s+ds, θ+dθ)⋅[x]+(Xc+dXc),
where M is a 2×2 rotation matrix, x represents the aligned shape,
and Xc represents the central point of current shape.  Second, we
may also deform the current local shape x, by changing local
shape parameter db to generate the new local shape as x+dx

= x +P(b+db).

3.  PDM Model Transition using Hidden Markov
Model

If the hand shapes undergo enormous shape changes in the
image sequence (the variance of the cloud of each corresponding
model point of aligned shapes is very large), then we need to
divide the training set of all the possible hand shapes into several
similar shape groups. The variance of each cloud of aligned
shapes in each group has to be small for tracking the variable
hand shapes. Then each group is treated as an individual training
set and trained as a different PDM shape model.

If the hand shape extraction by using current PDM shape
model is no longer effective, the specific HMM can be found to
determine when to replace it by another PDM model that is called
PDM model transition (see Fig. 3). The measurements {F(xi)} for
certain landmark points are used as an observation sequence for
the system to determine which HMM has the highest model
probability that indicates the most appropriate PDM model
transition.

3.1 Hidden Markov Model

 Here, we create one HMM for each possible PDM
transition between two consecutive frames. We use the
observations, O={Fi}, from current frame, to estimate the
optimum parameters for each HMM, i.e., we obtain the model
parameter λp, for the pth HMM. Given the measurement O={Fi}
of current frame and a HMM, which may indicate certain
unknown model transition, we calculate P(Oλ). The P(Oλ) can
be calculated by summing the probability over all the possible
state sequence S=(s0, s1,….sT), where st∈{1,2,…N}=ZN, in a
HMM model for the observation sequence:
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The objective in maximum likelihood estimation is to maximize
P(Oλ) over all parameters λ for a given observation.  The above

maximum likelihood estimation can be effectively solved by
Baum-Welch algorithm [12].  Here we consider different
optimization criterion for estimating the parameters of HMM.
Instead of using the likelihood function (2), we apply the
following function as the optimization objective (it is called the
state-optimized likelihood):
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Then we may apply the segmental K-means algorithm[21]
for estimating the parameters of the HMM’s.  Then, we choose
the best HMM u* (indicating the appropriate PDM model
transition) by finding the highest model probability, i.e.,  u* =
argmax1≤u≤U [Pu]  where Pu= Pu(O, S*λp), and λp makes maxλ

P(O, S*λ).

3.2 HMM Training

Since our decision rule is based on the state-optimized
likelihood function, the estimated parameter λ′ should be such
that Pr(Oλ′) is maximized over the training set.  The training
problem is the crucial one for most applications of HMM’s. It
allow us to optimally adapt model parameters to the observed
training data, and then create the best models for real phenomena.
In this paper, we define the observation sequence in terms of
spatial order (for each input frame) as O=(O1, O2, O3, O4, O5),
where O1={F(xi)} The central point of  {xi,} is located on the
finger-tip of the thumb, the index finger, the middle finger, the
ring finger, and the little finger, respectively. Each observation
vector Ot may be assigned to one of the three different states:
bending (Sb), half-bending (Sh), and straight (Ss) indicating the
status of each finger.

We start with a training sequence consisting of a number of
repetitions of the gesture frames. For each HMM model, we first
adjust the model parameters λ so that Pr(Oλ) is maximized.
Then we use Viterbi algorithm to find the optimal state sequence
associated with the given observation sequence.  The results are
used to re-estimate the model parameter λ′ .  The initial model
defines a critical point of the likelihood function, in which λ′=λ.
Baum-Welch algorithm [12] has been proposed to re-estimate a
new model λ′ which is more likely in a sense that Pr(Oλ′)>
Pr(Oλ).  The model λ′ indicates that the observation sequence is
more likely to be produced. Instead of finding the λp that
minimizes P(Oλ) (i.e., maxλp

 P(Oλ)), which requires summing

all possible state sequences (see (2)), we focus on the most likely
state sequence(see (3)), and apply the segmental K- mean
algorithm [11]

4. System Implementation Criteria

To make a single-digit number gesture, we start the
gesture-making operation from holding our fist, then raise certain
fingers to indicate the specific number (see Fig. 3), and finally
bend those fingers to return to fist-holding state.  If one want to
make gesture indicating two-digit number, then he may repeat the
above operation.  However, if we want to make a gesture
indicating a single-digit ‘0’, then we may differentiate the
beginning/ending fist-holding gesture from the gesture indicating
digit ’0’.  Therefore, we use the forward translation motion



between the beginning fist-holding gesture and the gesture
indicating digit ’0’ and then use the reverse translation motion
between the gesture indicating digit ’0’ and the ending fist-
holding gesture.

For each frame, we can track the hand gesture by using the
most appropriate PDM models (applied to the previous frame) to
calculate the {F(xi)} as an observation sequence. Using the
observations of current frame, we apply all possible related
HMM’s (see table 1) and find the best HMM with the highest
state-optimized likelihood that indicates the most appropriate
PDM model for the current frame. In our system, we have trained
two different categories of HMM’s. The first one has 10 HMM’s
(HMM i, i=0,1,..9) indicating no PDM model transition. The
second one consists of 45 HMM’s (HMMij) corresponding to a
PDM model transition, from current PDM model mi to the other
PDM model mj. We assume that the measurement statistics
{F(xi)} corresponding to HMMij representing the transition from
PDM model mi to PDM model mj and the other HMMji indicating
the transition from PDM model mj to PDM model mi are trained
as the same HMM. Given an observation sequence, we need to
find the optimal HMM which indicates whether there is an PDM
model transition or not.  If there is a PDM model transition, then
what kind of PDM model transition may occur. During the
training process, given as many known input frames as possible,
we train 55 different HMM’s individually for our system.  The
best trained HMM is the one indicating no PDM model
transition. Since the measurement statistics {F(xi)} of most of the
frames in the image sequence favor the first category HMM.

Here, we assume that the PDM model transition can also
be determined if the hand movement is tracked by measuring the
displacement of the centroid of the extracted hand shapes in two
consecutive frames. Therefore, to make a gesture indicating digit
‘0’ is made, we apply a hand translation motion to indicate the
PDM model transition from the initial conjunctive model m0 to
the sign model m0.  A input image sequence of a gesture
indicating a single-digit number ‘n’, will be processed and
described by three consecutive PDM models m0, mn, and m0.
Hence, the PDM model m0 plays two different roles: (1) m0 is a
conjunctive PDM model, if some sort of translation motion is
detected and the hand has moved away from the original position.
(2) m0 is a sign PDM model, if no translation motion is found for
a small time interval and then the hand has returned to the
original position.

5. Experimental Results

We have developed a system to recognize a gesture representing
any one-digit or two-digit number. First, we take 30 typical
frames for training each HMM which indicates a specific PDM
transition. There are five vectors (T=5) in each observation
sequence indicating current information of the five fingers and
three different states (N=3) for each model indicating the
bending, half-bending and straight status of each finger.

We have tested four image sequences for each gesture.
Most of the input gesture can be identified accurately.  We have
made the gestures, including the single-digit gestures, two-digit
gestures with/without hand translation motion.  These gestures
are made in front of three different complex backgrounds (i.e.,

Fig. 3).  The feature extraction results for the gestures of single-
digit number (see Fig. 3) are very accurate that makes the
corresponding recognition rate the highest. Since there are fewer
model transitions in the transition sequence, the selected HMM’s
have better chance to indicate the correct PDM model transitions,
and the new PDM models can be used to extract the features
more precisely.

The results for the gestures of two-digit number without
translation (see Fig. 4), and the two-digit number with translation
(see Fig. 5) are not as good as the single-digit ones (see Table 1).
However, they are acceptable. On the average, the identification
rate of our gesture recognition system is about 85%. The
translation information provides the system a very important
additional information of determining the correct PDM model
transition.  Therefore, the recognition rate of the one-digit (or
two-digit) gestures without translation is lower than the one-digit
(or two-digit) gestures with translation. The reasons for miss-
identification are (1) the pre-trained gray-level profiles stored in
the database are not sufficient for coping with every new input
gesture, (2) the number of principal components taken from the
gray-level profile are not sufficient for all the unknown input
gestures.

In our experiments, most of the model transitions detected
by HMM are accurate. The incorrect PDM model transitions are
identified when (1) the observation vector (provided by the PDM-
based hand-shape extraction process) is not accurate, (2) the
movements of the raising or bending fingers are not coherent.
For instance, the gesture of number ‘2’, normally, requires both
the index finger and the middle finger raised up-right almost at
the same time.  If the middle finger is raised faster by one frame
or two, then the selected HMM may not indicate the correct PDM
model transition. The error will influence the selection of all
possible HMM’s tested for the succeeding frames. If the current
selected HMM is not correct, then the correct HMM for the next
frame is normally not in the set of possible HMM’s.  The
recognition rate of using HMM in the experiments to test the 120
image sequences (30 frames/sequence) is illustrated in Table 1.

6. Conclusions
We have developed a recognition system to extract the

shape feature and recognizes the gestures. In the experiments, we
have proved that our method is more reliable than the previous
methods when dealing with the problems of recognizing gestures
before non-stationary backgrounds, complex backgrounds, and
similar-intensity occlusion. We may easily extend our system to
recognize the gestures indicating more-than-two-digit numbers.

Table 1. The overall gesture recognition rate.
Gesture Types Number of test

sequences
Recognition

rate
Single-digit gestures with translation 120 93%

Single-digit gestures without translation 120 91%
Double-digit gestures with translation 120 84%

Double-digit gestures without translation 120 81%
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          (a)  (b)                   (c)                         (d)
Figure 1.(a)(b) illustrate the hand shapes with labeled points.  (c)

shows the result that (b) is aligned with (a). (d) shows the
aligned shape of a training set.

 (a)   (b)                    (c)                     (d)
Figure 2. Illustration of the process of model transition. (a) shows

the fitting of ith image frame using the model gesture-0,
(b) when the flexible model meets the (i+1)th frame, the
current model can not fit the hand shape exactly, (c)
given an initial hand-shape, the model transition occurs,
(d) (i+1)th frame is fitted exactly using the newly
suggested flexible model.

         (1a)                     (1b)                      (1c)             (1d)

           (3a)                  (3b)                   (3c)         (3d)

          (5a)                         (5b)                  (5c)    (5d)

           (7a)                  (7b)                    (7c) (7d)

            (9a)                   (9b)               (9c)               (9d)
Figure 3. The image sequence tracking of the single-digit gestures

“1” , “3”, “5”, “7” and “9”, the PDM model transition
starts from m0 to mi, and finally returns m0.

        (a)             (b)             (c)             (d)              (e)            (f)
Figure 4. The image sequence tracking of two-digit gesture “12”.

The model transition does not be return to m0 and the
middle finger is straightened directly which can be
described by m2. (a) shows the initial hand shape located
near the real hand in the first frame, (b)~(f) present the
state transition from model m0 to model m1, then
transition to model m2.

*
       (a)             (b)           (c)             (d)              (e)              (f)
Figure 5. The image sequence tracking of two-digit gesture “12”;

(a) shows the initial hand-shape located near the real
hand in the first frame, (b)~(f) present the PDM model
transition from model m0 to m1, then return to model
m0, finally transition to model m2.


