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ABSTRACT
We use a new uncertainty measure, Hp , that predicts the

compactness of digital signal representations to determine a
good (non-orthogonal) set of basis vectors. The measure uses the
entropy of the signal and its Fourier transform in a manner that
is similar to the use of the signal and its Fourier transform in the
Heisenberg uncertainty principle. The measure explains why the
level of discretization of continuous basis signals can be very
important to the compactness of representation. Our use of the
measure indicates that a mixture of (non-orthogonal) sinusoidal
and impulsive or “blocky” basis functions may be best for
compactly representing signals.

1. INTRODUCTION

The use of wavelets by the signal processing community over the
past decade has been astounding. Wavelet-representations of
digital non-stationary signals are used in many compression and
enhancement schemes [1]. To date, most research interest has
centered on orthogonal or biorthogonal perfect reconstruction
filter banks [2]. Recently though, some work has been presented
that considers (non-orthogonal) multi-transform representations
[3]-[9]. These approaches resulted in the development of greedy
“recursive residual projection” algorithms [3]-[5] and
multivariate Gauss-Newton searches [6]-[9]. Another approach
resulted in the greedy “matching pursuits” algorithm of [10],
where discretized Gaussian pulses form the basis. One
unanswered question in these papers is the so-called “bast-basis”
problem. Ad hoc methods or arbitrary combinations of oft-used
basis sets are used in [3]-[9]. A more sophisticated approach that
is computationally intensive and introduces latency in coding is
provided in [11]. An interesting approach to modeling speech
and audio is described in [12]. Our results provided in this paper
appear to corroborate the results from that paper. We also
provide a different viewpoint for understanding how that method
might work.

Specifically, in this paper, we show how the discretization of the
basis signals changes our conception of the Heisenberg
uncertainty principle. Consequently, we introduce a new measure
that we conjecture is more applicable to the discrete signal
representation problem. We see that discretized Gaussian pulses
are not always optimal. We find that the measure provides a
rationale that explains why the multi-transform methods work
well.

This paper is organized as follows. First we review the basics of
the time/frequency (phase) plane for continuous-time signals. We
next extend the discussion to the sample-frequency (phase)
plane. We see that the Heisenberg inequality used in the
time/frquency (phase) plane is inadequate for the discretized
version, and we provide an alternative measure using the notion
of entropy. We provide a conjecture that we have ample evidence
for, including both computational and mathematical (proof in
[13]). From this evidence, we find that we have two research
directions possible for choosing a “best basis.” These are: multi-
transform and non-orthogonal basis sets and optimal orthogonal
basis functions. We explore only the former in this paper. We
discuss the multi-transform approach to select non-orthogonal
basis functions in section 4. The latter possibility is currently
under study by the authors. Finally, we conclude.

2. TIME-FREQUENCY PLANE FOR
CONTINUOUS-TIME SIGNALS
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norm
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The coordinates t f,0 5  provide a time-frequency description of

the continuous-time signal u t( ), and the vector space of all t f,0 5
coincides with R2  and is called the time-frequency plane.

The accuracy of the time-frequency representation is limited by
the Heisenberg inequality [14], which relates the uncertainties of
time and frequency. Moreover, the (Heisenberg) product of
uncertainties is invariant under translation, dilation, and
modulation. We believe (and others do as well, e.g. Coifman,
Wickerhauser via oral communication) that humans recognize
signals as objects in the time-frequency plane. Consequently, it
seems reasonable to assume that representations that are highly
concentrated in the time-frequency plane are desirable. Because
equality (in the Heisenberg inequality) holds for Gaussian



shapes, Mallat and Zhang proposed the use of a dictionary of
non-orthogonal Gaussian pulses and a search algorithm that they
termed “matching pursuits” [10].  However, as we all can attest
to, common practice presents us with digitized signals: digital
audio, still images, or video. One might think that as long as the
number of data is large that the discretization would not impact
these results. We have determined that this intuitive feeling is
incorrect. Also, in many real instances, the number of data is
small, especially in image processing applications. We
concentrate on this understanding next.

3. THE SAMPLE-FREQUENCY PLANE
FOR DIGITAL SIGNALS

Fix a finite set of non-negative integers 0 1 2 1, , , ,� N −: ?. Let HN
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, the discrete Fourier
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Here, we need only the translation and modulation operators
because dilations in the discrete domain can be defined as
compositions of translations. Furthermore, there is no geometric
analog of dilations because we cannot “zoom in and out” due to
the finite number of data. We should note that no results in this
paper are affected by dilations, we just choose not to highlight
them because of the lack of physical interpretation.

We now recall some simple facts. If we view the digital signal
u n( )  as a column vector, then we may write the DFT as the
matrix multiplication of the column by
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Hence F IN
4 =  (the N-dimensional identity matrix).

We are unaware of a straightforward adaptation of the
Heisenberg inequality for signals in HN . One problem is that the
“position operator” is not well defined. One way to circumvent
this problem is to use the information theory notion of entropy
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Note that the entropy function is undefined outside the interval
0 1, . We use the shorthand −x xln( ), keeping the definition of

(1) in mind. Thus, for u u HN= ∈1, , we have
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This measures the (lack of) concentration of u in the domain n .
The range of the measure is from 0 when the signal is the unit
sample sequence to ln( )N  when the signal is a constant value
[14]. Entropy can be viewed as a measure of uncertainty then
because when all of the signal energy is localized in time, the
position is certain and the entropy is zero, and if the signal
energy is spread evenly over time then the entropy is maximal.
Note that the entropy in (2) is invariant under any permutation of
indices.

Since H Fu0 5  measures the uncertainty of u in frequency, it may
seem reasonable to consider the straightforward and obvious
analog to the Heisenberg inequality

H u H Fu u u HN( ) ,0 5 ≥ = ∈0 1 and (3)

However, it can be easily shown from our previous discussion
that the sequences that minimize this naïve analog of the
Heisenberg inequality are functions that have all of their energy
concentrated at either one time (e.g. the unit sample sequence) or
one frequency (e.g. a sinusoidal function). In these cases, the
product in (3) achieves the equality, and so this measure does not
usefully represent concentration in both time and frequency. A
better procedure (with respect to measuring concentration in both
the time and frequency domains) is to combine the entropies by
adding them. Since the human perception of a signal may depend
differently on its concentration in time and frequency, we
introduce the following weighted sum as a measure of
concentration in both the time and frequency domains:
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We have used the weighting parameter p to trade-off
concentration in time and in frequency. For any allowable p, the
function Hp  in (4) is invariant under translations and

modulations. All our experiments with the signals used to
generate Figure 1 and Figure 2, as well as the discrete wavelet
transform, several different lapped transforms, and many
randomly generated signals indicate the veracity of the following:

Conjecture: For any u HN∈ , with u = 1, H u N1

2

1

2
( ) ln( )≥ .

Moreover, the only sequences u HN∈ , with u = 1, for which
H u1

2

( )is minimal are obtained via any composition of translation

and modulation operators, the DFT, or multiplication by a
complex number of absolute value 1 from the sequence
u = { }1 0 0� .

We have numerous computer simulations that support the
conjecture, as well as the fact that the conjecture can be proven
true for all normalized primitive characters in number theory
(proof in [13]).



Where the minimum of Hp  exists as u varies will be reached on

different sequences at different values of p (e.g. see Figure 1 or
Figure 2). In particular, we have noticed that discretized
Gaussian pulses with large standard deviation relative to the
number of samples N  do not yield functions well localized in the
sample-frequency plane. Considering that we don’t know the
proper value of p for any given signal, we see two choices in
selecting a set of basis functions:

1. Finding basis sets for which (4) is minimal for all p. This
choice leads to non-orthogonal basis, in particular multi-
transform selections. This choice is examined in the next
section.

2. Finding sequences for which (4) is a function of p with zero
derivative everywhere (we call this a “horizontal function of
p). This could lead to finding a “best” basis that is either
orthogonal or non-orthogonal (as in [10]). This choice is
currently under study.

It is important to realize that the entropy measure does not
generalize to define a good measure of concentration for a

continuous signal u t t R( ), ∈ , of norm 1. The point is that u t( ) 2

may well take on values larger than 1 and thus fall outside the
defined range given in (1) responsible for the good properties of
discrete entropy. Shannon [15] has introduced a notion of
entropy for continuous random variables replacing the sum by
the integral

H u u t u t dt
R

( ) ( ) ln ( )= −I 2 24 9

The main drawback of this measure of concentration is that

u t( ) 2 may well take values larger than 1 and so give negative
entropies, which is contrary to our normal understanding of the
measure of concentration. Furthermore, when the energy is
concentrated at a finite number of instants in time, the above
measure approaches negative infinity. Different (non-standard)
measures of discrete entropy have been unified to a
corresponding continuous-time entropy measure [16], but these
measures have not proven to be useful.

4. NON-ORTHOGONAL BASIS

As we have stated earlier, two potential “good” non-orthogonal
solutions exist: the general form and the multi-transform
solution. We first consider the general form (with Gaussian
waveforms), and then from the explanation and the example,
approach the multi-transform solution and see why it might be
the “best” non-orthogonal solution. First, the Gaussians.

Consider the Gaussian waveform
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While both the waveform and its Fourier transform are Gaussian
in shape, the precise shape is not invariant under the transform
except under certain conditions on the mean and variance. In
discrete time, this change in shape through the transform depends
on the number of samples present in the discretized waveform.
For example, if we consider the zero mean Gaussian pulse
sampled uniformly with N samples, then we must have the
variance σ 2  equal to 2 if we have 32 samples in the discrete
waveform for the entropies in the sample and frequency domains
to be equal. Further results show that the dependence is inversely
related. For instance, when σ 2 4=  we must have 16 samples for
the two entropies to be equal and when σ 2 1=  we must have 64
samples for the two entropies to be equal. This change in shape
directly affects the computation of our uncertainty measure.

With the number of discretized samples at N=64 and with the
continuous Gaussian pulse having unit variance, Figure 1 shows
the H pp vs.  for the Euclidian (Identify) vector, the DCT basis,

the Gaussian pulse, and the 0th-order Haar function. The
horizontal asymmetric dashed line indicates the conjectured
minimum for H1

2
. Note that the Identity and DCT bases achieve

this minimum for p = 1
2. In this case the Gaussian pulse

localizes well across the entire range of p which we expect from
our above discussion. Note, however, that the conjectured
minimum is not reached. The conjectured (and reached)
minimum for this value of N  is below the horizontal line
connecting the Gaussian pulses. Since Hp  is linear in p, the

“good” basis function family would have a horizontal function.
So the Guassian pulses are “good.” However, they do not achieve
the known minimum (the dashed line in Figure 1), and so it
might be possible to improve on them. This problem is not
trivial.

Furthermore, note that when N=256, the Gaussian pulse does not
localize uniformly across the range of p, as can be seen in Figure
2. This result should be expected because the oversampling
(relative to the variance of the continuous Gaussian pulse) leads
to unequal shapes in the sample and frequency domains.

We also note from Figure 1 that the optimal basis set for any p
must be either the Euclidian vector (unit sample sequence) when
p ≤ 1

2 or the DCT basis set (sinusoidal sequence) if p ≥ 1
2.

This fact is also determined experimentally by minimizing the
function Hp  for the various p. Thus, the “best” set of basis

functions would consist of sinusoidal and impulsive (or blocky)
basis functions. This is best seen by noting that in this case, the
localization would follow the triangle formed by the DCT (+)
functions in the figures for signal portions where the “actual”
p ≤ 1

2 and the Identity (-) functions in the figures for signal

portions where the “actual p ≥ 1
2. These results appear to

strongly confirm some results given in [12], where a multi-
transform technique for speech and audio modeling was
presented. The modeling technique used sinusoids and transients
(identity transforms in our vernacular). The results may also
explain some results given in [3],[4]. In those papers, the authors
have noted that the best performance occurs when the DCT basis
is used in combination with the Slant basis functions. The results
may also explain some of the performance seen in the paper [11].



This paper developed a technique for choosing the transforms in
a multi-transform system.

5. CONCLUSIONS

We have shown that a straightforward application of our
knowledge of the time-frequency plane (in particular, the
Heisenberg inequality) to the discretized sample-frequency plane
leads to an incomplete understanding and some erroneous
conclusions. Because of an ill-posed question, we are forced to
consider the use of entropy in an analog to the Heisenberg
product, which we have introduced as the function Hp . This

measure accounts for the possibility of different resolutions in
the sample-frequency plane. For p ≠ 1

2 the minimizing signals

are not discretized Gaussian pulses. We conjecture that signals
well located in the sample-frequency plane are signals where Hp

vs. p is horizontal (yielding the optimal orthogonal basis).
However, if orthogonality is not constrained, then the multi-
transform methods employed in  [3]-[9] appear to be very good
candidates for optimality because of their mixture of sinusoidal
and impulsive (blocky) sequences. Furthermore, for varying
sampling frequencies, discrete Gaussian pulses obtained from
continuous ones are not optimal according to our conjecture.
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Figure 1. Identity (-), DCT (+), Haar (*), and Gaussian
(o) Hp vs. p for N=64

Figure 2. Identity (-), DCT (+), Haar (*), and Gaussian (o) Hp

vs. p  for N=256


