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ABSTRACT
This paper introduces a segmentation algorithm for object-based
image coding techniques. This scheme is based on Discrete
Wavelet Transform (DWT)/Redundant Discrete Wavelet
Transform (RDWT) and Multiresolution Markov Random Field
(MMRF). DWT based MMRF works well for noise-free images.
It merges details in the original image with their respective visual
objects and divides the image into different segments according
to their textures. The RDWT based MMRF is a generalization of
the DWT based MMRF. When the noise level is high, RDWT
based MMRF reduces the influence of noise in the segmentation
procedure and generates much better results at some computing
costs. The proposed algorithm has been successfully integrated
with our DWT based Region of Interest (ROI) compression
coder, the Generalized Self-Similarity Trees (GST) codec, for
networking applications.

1. INTRODUCTION

Object-oriented image coding is a new and promising technique
for visual communications [1][2]. It has key features for
applications such as Video-on-Demand and other visual
communications for the next generation Internet. Object-oriented
image coding techniques usually consist of two major steps:
segmentation and coding. In the first step, images are divided
into different segments according to a given segmentation model.
These segments are then coded with parameters that are based on
different criteria. Because of this, the segmentation result greatly
affects the effectiveness of the whole coding scheme.

 Recently, Markov Random Field (MRF) based image
segmentation method has attracted a lot of attention in the
literature and proven to be very successful [3][4]. It provides a
convenient and consistent way to model context-dependent
entities in image processing. Most images in visual
communications are composed of different textural regions. For
example, in videophone applications, speakers’ faces have a
different texture than that of the background; in telemedicine
applications, diseased organelles have different appearances than
their normal counterparts. Given an image, MRF optimizes the
segmentation output according to the image texture based on the
maximum a posteriori (MAP) probability criteria.  In addition,
Discrete Wavelet Transform has been widely used as an efficient
way for image coding. Some of the well-known schemes are the
Embedded Zerotree Wavelet (EZW) algorithm and Set
Partitioning in Hierarchical Trees (SPIHT) algorithm. They can
achieve a high compression ratio with good visual quality.
Because of its efficiency, the DWT based image coding schemes
are also widely used in video coding and visual communications.

In this paper, we describe an image segmentation algorithm
suitable for object-oriented image coding based on DWT/RDWT
and MMRF. It can be easily integrated with DWT based object-
oriented image coders for object-oriented coding. By extending
our scheme with RDWT, we show that the proposed algorithm
can be used in various conditions for image communications.

2. MARKOV RANDOM FIELD

Most images in visual communications are composed of different
textural regions. Let Y={yj,k} denotes an observed image. Without
loss of generality, it can also be re-indexed as Y={yi}, where
i={1,2, …,W×L} and W×L is the size of image Y. After
segmentation, Y is labeled by segmentation result X={xi}, i={1, 2,
…, W×L }, where xi=k means the pixel at position i in the original
image Y belongs to label-k in the segmented image X, where
k={1, 2, …, K } and K is the total number of different labels.
According to Hammersley-Clifford theorem [6], the probability
density of X is given by a Gibbs density, which has the following
form:
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Where U(X) is the energy function which is the summation of
clique potentials Vi(X) {i ∈Z} over all possible cliques, C. In
MRF, a clique consists of a set of pixels that are neighbors to
each other, and the potential function Vi(X) depends on the local
configuration of cliques. The energy function of MRF can be
expressed as the summation of its cliques according to their
sizes:
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Here, the multilevel logistic (MLL) model is employed for MRF.
The potential function for two-pixel cliques in MLL is defined
as: c.
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where 
jβ is a constant associated with jx . The potential

function for one-pixel cliques is defined as:
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where 
kα is a parameter associated with label k.  According to

Bayes’ theorem:

   ),()|()|( XpXYpYXp ∝                           (5)

where )(Xp is the a priori density of the region, and )|( XYp  is

the conditional density of the observed image given the
distribution of the region. For a given image Y of size W×L, the a
posteriori probability mass function for pixel labels X can be
expressed as:

,)|( )(1 YXUeZYXp −−=                              (6)

where Z-1 is a normalizing constant. According to equation (1)
and (5), the corresponding energy function is:

,)()()( XYUXUYXU +=                           (7)

where U(X) equals equation (2). Assume that the observed image
Y is the combination of a true image X and an independent
Gaussian noise, we have  Y=X+E, where }0,{ LWieE i ×<<= ,

and ),(~ 2δii xNe . Then, the utility function can be expressed as
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The objective of the MRF segmentation scheme is to assign a
label value to each pixel in the original image Y, such that the
energy function U(X|Y) is minimized. For more details on MRF
theories, the reader is referred to [7].

3. MMRF SEGMENTATION BASED ON
DWT AND RDWT

3.1 Discrete Wavelet Transform and Wavelet Frame

Wavelet decomposition for function f(t) is expressed as:
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 where )(, tabψ  is the wavelet that satisfies the admissibility
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 is the wavelet

function at the scale a, shift-location b. One can retrieve the
function f(t) from ),( abfWψ

 by the double integration

reconstruction formula:
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By defining L = (g(n)) and H=(h(n)), n∈Z, the discrete wavelet
transform can be implemented by quadrature mirror filters
(QMF). Here, L denotes a halfband lowpass filter, H denotes a

halfband highpass filter and )(xφ is the scale function

corresponding to wavelet )(xψ . g(n) and h(n) are defined as:
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We use the 2-dimensional version of the DWT (2D-DWT) to
analyze digital images. The easiest way to obtain the two-
dimensional wavelets and scaling functions is to use the tensor
product of 1-D wavelets and 1-D scaling function along the
vertical and horizontal directions. In QMF, this means the L and
H filters are applied to the image in both horizontal and vertical
directions. The outputs are subsampled by a factor of two and
consist of three high-pass subbands, HH, LH, HL and one low-
pass subband LL. The process is repeated on the LL band to
generate the next level of the decomposition using the same
method. More detailed discussion on the above statements can be
found in [5].

3.2 MMRF segmentation based on DWT

When we use object-based image processing for videophone
application, it is natural to separate the face of the speaker in a
videophone frame as one segment, while the body of the speaker
and the background as other segments. However, this objective is
not easy to achieve by conventional MRF schemes. The eyes, the
mouth and the shadows on the face are often mistaken as
different segments by conventional approaches, adding
unnecessary complexities to the coding scheme. We propose a
Multiresolution MRF (MMRF) segmentation scheme, based on
DWT, to overcome this problem. The MMRF segmentation
technique has been used for image segmentation in several cases,
and is proven to be a fast and robust segmentation method [4].
Different from existing algorithms that depend on downsampling
techniques to acquire different resolution images, we choose the
DWT. By taking LL subband images for MRF segmentation, we
can effectively merge those unnecessary small regions and
produce only the meaningful regions for subsequent coding.

After an image is decomposed into subband images, the LL
subband contains only low frequency information. In other
words, small regions in the original image that contribute to the
high frequency information in the original image have been
smoothed out. These small regions are potentially more likely to
be removed during the segmentation procedure in LL subband
images. We can illustrate this using Figure 1, which is the one
dimensional case. Figure 1 (a) is the original function f0(x), and
Figure 1(b) is f1(x), which is the L subband of the twice DWT
decomposed f0(x). If we select 0, 60, 100 and 140 as the mean
value to initialize the segment procedure for f0(x), in Figure 1(a),
there will be six points from position x=240 to x=245 belong to
the set with mean value 140. But in Figure 1(b), there are no such
points. In 2D cases, this means that the wavelet transform
removes those small regions in the original image during the
initialization step. Even if the small regions can not be removed
in the initialization procedure, it becomes easier to be removed in
later processing. This is because when a pixel in a small region is
surrounded by larger ones, there will be more neighbors with
different labels. Thus, the energy calculated by equation in (7)
decreases when this pixel label is switched to those that belongs
to the neighboring large regions.



 

(a) (b)

Figure 1. (a) Function f0(x).  (b) f1(x).

 Figure 2 describes the segmentation
procedure. Images are first
decomposed into wavelet subbands.
The segmentation starts from the LL
subband at the lowest resolution level
and the k-means algorithm is used for
the initialization of the MRF at this
level. For subsequent finer resolutions,
we use results from their previous
levels as the initialization of MRF
procedure. The initialization is based
on the self-similarity map between
adjacent resolution levels (Figure 3).
That is, assuming that ]][[1 jiXk−

 is the

segmentation label value of pixel (i, j)
in the (k-1)th resolution,  after
initialization, the label value of pixel
(m,n) in level K can be expressed as

Xk[m][n] = Xk-1[i][j] (if  2/m =i,

and   jn =2/ .). After initialization,

Iterated Conditional Modes (ICM)
is used to get the new segmentation
result. This procedure is repeated up until
to the finest resolution level.

Figure 3. Initialization procedure between different resolutions.

3.3 MMRF segmentation based on Redundant DWT

The segmentation scheme based on DWT and MMRF works well
when the foreground of the image frame is clean, such as in the
videoconference applications. However, in other cases such as
remote sensing and telemedicine, the images to be coded are
often polluted by noises from image sources. For example, in
ocean geography, seabed structures and sediments are often
blurred by sea surface waves. In screening mammography,
abnormal tissues may be covered by regular tissues. Strong noise
often affects the segmentation results. To alleviate these impacts,
we develop the Redundant DWT (RDWT) based MMRF to
reduce the impact of noises on segmentation results.

RDWT has been investigated and applied to many fields [8]. In
RDWT, the downsampling operation is skipped after the signal
has passed through L and H filters. Thus, the size of the image
remains unchanged in every processing stage. Figure 4 describes
the way we use RDWT to perform MMRF. First, RDWT is
applied to the input image. We get the LL subband image which
contains only low frequency information but has the same image
size as the original image. This image is called resolution 0.
Then, by downsampling this image by the factor of 2 at each
resolution level, coarser images of resolution 1, resolution 2 …
are generated. The subsequent segmentation uses the MMRF
procedure introduced before, starting from the coarsest level and
propagating upwards to the finest level resolution 0. Since LL
subband of RDWT contains only low frequency information of
the original image, MMRF segmentation with RDWT removes
unwanted noise in the original image. The RDWT procedure
serves to remove the noise for an efficient MMRF procedure.
Although the RDWT has a computation complexity of O(nlgn)
while that of DWT is only O(n), the computation speed is not
adversely affected for common size images.

Figure 4. MMRF with RDWT

4. EXPERIMENT RESULTS

The source images for our experiment are Miss America and lab
scene (Figure 5). Both of them are 176*144 gray scale images
with 255 gray levels.

  

               (a) Miss America. (b) lab scene

Figure 5. Images used for experiments.

Figure 6 compares the segmentation results of normal ICM
scheme with proposed MMRF using DWT (using ICM at each
resolution level). The normal MRF scheme generates small
regions which will increase overheads in object oriented coding
procedure. Our proposed method effectively separates the
speakers’ faces, shoulders and background. By using this result,
the ROI based GST codec can correctly set different compression
ratios for different objects in original image frames. The

Figure 2. MMRF seg-
mentation procedure
using DWT

X X



speakers’ faces are kept at high visual quality when the network
bandwidth resources are scarce.

Figure 7 compares results of DWT based MMRF with RDWT
based MMRF using three examples. The first column images are
original images including a sinusoidal-noise polluted sea-
sediment photo, an aerial photo of rocks in seabed with white
waves on the sea surface and a mammogram with cancer and
fatty tissues. In object-based image coding, we want to
distinguish the sediments, the rocks in the seabed and the cancer
tissues. When DWT based MMRF is used, the segmentation
results are distorted by the noise (Figure 7(a)) or generated many
false regions caused by noises (Figure 7(b) and 7(c)). However,
RDWT based MMRF can successfully reduce the impacts from
unwanted noises and segment the input image successfully.

5. DISCUSSION AND CONCLUSIONS

We introduce an object-based segmentation scheme based on
DWT/RDWT and MMRF. From experimental results, we show
that using our scheme, image frames can be effectively divided
into meaningful image object segments. This technique is useful
in object-based image coding and interactive applications for
visual communications.
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Figure 6. (a) Segmentation results of common MRF using ICM.
(b) Segmentation results of DWT based MMRF segmentation.
(c) Region of interest based on segmentation results of Figure(b).
(d) Coding result of GST codec with the ROI at compression
ratio 1 but the background at 50.

     Original Image      MMRF with DWT    MMRF with RDWT

(a)   

(b)   

(c)   

Figure 7. The first (from left to right) column images in (a)–(c):
Original image of a sea sediments image polluted by sinusoidal
signal; Original image of part of an aerial seabed photo with
white waves; Original image of part of a mammogram with
cancer and fatty tissues. The second column images in (a)-(c)
Results using DWT based MMRF. The third column images in
(a)-(c): Results using RDWT based MMRF.


