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ABSTRACT

In this paper, we develop the theory of the wavelet trans-
form over Galois �elds. To avoid the limitations inher-
ent in the number theoretic Fourier transform over �nite
�elds, our wavelet transform relies on a basis decomposition
in the time domain rather than in the frequency domain.
First, we characterize the in�nite dimensional vector spaces
for which an orthonormal basis expansion of any sequence
in the space can be obtained using a symmetric bilinear
form. Then, by employing a symmetric, non-degenerate,
canonical bilinear form we derive the necessary and su�-
cient condition that basis functions over �nite �elds must
satisfy in order to construct an orthogonal wavelet trans-
form. Finally, we give a design methodology to generate
the mother wavelet and scaling function over Galois �elds
by relating the wavelet transform to a two channel parauni-
tary �lter bank. Online relevant information can be found
at http://www.ee.gatech.edu/users/fekri.

1. INTRODUCTION

Filter banks, and the wavelet transform have established
themselves as powerful tools in the analysis of signals and
images when these objects are viewed as sequences over real
or complex �elds. Recently, the extension of the wavelet
transform to the situation in which the complex �eld is
replaced with a �nite �eld has become of interest. In [1]
the authors show that unlike the real �eld case, there is no
complete factorization technique for paraunitary FB over
GF (p), for p a prime. Relying on the Fourier transform
de�ned over GF (pr), the authors of [2] construct a wavelet
transform for �nite dimensional sequences (periodic sequen-
ces of period 2n) over �elds with a characteristic other than
2, p 6= 2. An extensive review of �nite �eld transforms
can be found in [3]. Wavelets and �lter banks over �-
nite �elds have potential applications in the cryptography,
spread-signature CDMA systems, the theory of error cor-
rection codes [4], biosequence analysis [2], and the coding
or analysis of halftone images [5]. While these applications
need more investigations, this paper studies the theory of
the wavelet transform of in�nite dimensional sequences de-
�ned over any �nite �eld GF (pr). Since we do not require
the existence of the number theoretic Fourier transform [6],
our formulation becomes more attractive particularly for
the �elds with characteristic 2, GF (2r).

Throughout this paper, all arithmetic is carried out in
the �nite �eld. If the �eld is GF (p), p a prime, then addi-
tion and multiplication are de�ned modulo-p. In the �elds

of the form GF (pr); r > 1, a number a is represented by a
polynomial Sa(y) of degree r�1 where the coe�cients lie in
GF (p). Then, addition is de�ned as addition of polynomi-
als in GF (p), and multiplication is de�ned to be polynomial
multiplication modulo a �xed polynomial q(y). The poly-
nomial q(y) is a monic irreducible polynomial of degree r
over GF (p) [7]. To simplify the notation, we will represent
the numbers in GF (pr) by alphabetic variables instead of
by their polynomial representations.

2. FINITE FIELD DISCRETE TIME BASIS

2.1. Non-degenerate Bilinear Form

Let � be a vector space over the �nite �eld F with addition
and multiplication de�ned on F . We would like to construct
the set of orthonormal basis functions f�k(n)gk2Z such that
any arbitrary sequence x(n) in � can be written as:

x(n) =
X
k2Z

h�k(n); x(n)i�k(n): (1)

The proper characteristics of the vector space � that allows
us to do this expansion will be discussed later in this paper.
The problem with this expansion is that the space � is not
an inner product space, because the positive de�nite prop-
erty does not hold. For example, a sequence s(n) in GF (2)
that contains an even number of ones is orthogonal to itself
, hs(n); s(n)i = 0.

To resolve this dilemma we employ the symmetric bi-
linear form that is de�ned for two vectors X and Y as:

hX;Y i = X
T
AY;

where A is a symmetric matrix associated with the basis set
for the space. One can verify that, like the inner product,
the bilinear form has the bilinearity and symmetry prop-
erties. However, it allows for a nonzero sequence to be
self-orthogonal. Furthermore, to implement the �nite �eld
wavelet transform using a �lter bank, we use the canonical
bilinear form (also known as the canonical inner product
[8]). It can be shown that every bilinear form can be writ-
ten as a canonical form. The canonical bilinear form of two
sequences a(n) and b(n) is given by:

ha; bi =
X
i

a(i)b(i); (2)

where the arithmetics is carried out in the �nite �eld F .



De�nition: With the canonical bilinear form de�ned in
(2), a set B = f�k(n)gk2Z is called an orthogonal basis
for the space � if they satisfy h�i; �ji = 0 for i 6= j and
f�k(n)gk2Z is a spanning set for the space �.

This de�nition allows that some of the basis functions
to be self-orthogonal. Note that the set B is an orthonor-
mal basis, if every �m that is not self-orthogonal satis�es
h�m; �mi = 1. We need to borrow two de�nitions from ab-
stract algebra: the null space of a canonical bilinear form
and the non-degenerate form. For the given canonical bilin-
ear form, a vector w 2 � is called a null vector if hw; ui = 0
for all u 2 �. Therefore, the null space of the canonical
bilinear form is de�ned by:

N� = fw 2 � : hw; ui = 0 8 u 2 �g:

A canonical bilinear form is said to be non-degenerate if its
null space is f0g.

Theorem 1 [9]: Suppose that the set of discrete func-
tions f�k(n)gk2Z is an orthogonal basis for the vector space
�. Then, the canonical bilinear form associated with this
basis set is non-degenerate if and only if h�k; �ki 6= 0 8k 2
Z.

Remark 1: Theorem 1 establishes the fact that the
mother wavelet and the scaling function in the wavelet de-
composition of the space � cannot be self-orthogonal se-
quences. This will be discussed later.

The theory of multiresolution analysis for discrete time
signals over real or complex �elds has been developed in
[10], and for periodic signals in [2]. To develop a wavelet
transform over �nite �elds we need only to give a formula-
tion of the wavelet decomposition of the space � onto two
orthogonal subspaces V0 and W0. Then, for the multireso-
lution analysis of the space �, we repeat this decomposition
on V0 similar to the idea developed in [10]. Our wavelet
transform formulation relies on the basis decomposition in
the time domain rather than in the frequency domain. This
is mainly because the number theoretic Fourier transform
may not exist in the given �nite �eld [6]. The existence
of the number theoretic DFT requires the existence of an
element of order L (assuming the signal length to be L)
over GF (pr). This requires that L divides pr � 1 which is
a strong restriction.

2.2. Orthonormal Wavelet Basis Over Finite Fields

In this section we derive the formulation of the wavelet de-
composition of a space � into the direct sum of two orthog-
onal subspaces V0 and W0 as � = V0 �W0. Proposition 1
characterizes the properties of the canonical bilinear form
over the subspaces V0 and W0.

Proposition 1 [9]: Suppose two subspaces V0 andW0 are
orthogonal complements of each other. Then V0\W0 = f0g
if and only if the canonical bilinear form is non-degenerate
on both V0 and W0.

From Proposition 1, we conclude that in the orthogonal
wavelet decomposition of the space � as the direct sum of
two subspaces, the canonical bilinear form must stay non-
degenerate on V0 and W0. This results in Fact 1 immedi-
ately:

Fact 1: For a successful orthogonal wavelet decomposi-
tion of the vector space � over �nite �eld F , the canonical
bilinear form must be non-degenerate over �.

From now on, we will refer to � as a non-degenerate
vector space over a �nite �eld without mentioning the un-
derlying bilinear form. The scaling function '(n) and the
mother wavelet  (n) de�ned over the �nite �eld F construct
a wavelet transform if they satisfy:

V0 = spanf'(n� 2j)g j 2 Z

W0 = spanf (n� 2j)g j 2 Z
(3)

and they should meet the following conditions:

h'(n� 2k); '(n� 2l)i = 0 8 l 6= k
h (n� 2k);  (n� 2l)i = 0 8 l 6= k
h'(n� 2k);  (n� 2l)i = 0 8 l; k:

(4)

Furthermore, since the two subspaces V0 and W0 are non-
degenerate spaces, as a result of Theorem 1 the following
conditions must be satis�ed as well (note that the Theorem
only requires a nonzero value, but we further normalize the
sequences):

h'(n); '(n)i = 1
h (n);  (n)i = 1:

(5)

It is worth noting that the result of the bilinear forms in
(5) can be zero in other forms (eg., biorthogonal wavelet
transform) of wavelet transform over �nite �elds.

2.3. Completeness of the Orthonormal Set

The interesting question is whether the functions '(n) and
 (n) that satisfy the quadratic equations (4) and (5) con-
struct an orthonormal basis set for the space � or not. In
other words, given the solution of the quadratic equations,
is it possible to write any arbitrary sequence in the non-
degenerate space � as:

x(n) =
X
j2Z

h'(n� 2j); x(n)i'(n� 2j)

+
X
j2Z

h (n� 2j); x(n)i (n� 2j)?
(6)

The problem is that the vector space � de�ned over a �-
nite �eld with the canonical bilinear form is not a normed
vector space. Consequently, `2-norm convergence does not
apply to the in�nite sum (6) on � unlike the case where the
wavelets are de�ned over the real �eld. In the next section
we show that the in�nite sum in (6) converges component-
wise to x(n). Using an equivalent condition, we show that
'(n) and  (n) that satisfy (4) and (5) construct a complete
spanning set, f'(n � 2k)gk2Z [ f (n � 2k)gk2Z , over the
non-degenerate space �.

The discrete wavelet transform (DWT) and its inverse
(IDWT) are easily recognized as the analysis and synthesis
banks of the two band �lter banks (in Fig. 1), respectively.
By choosing h0(n) = '(�n) and h1(n) =  (�n), we easily
observe that:

y0(n) = hx(m); '(m� 2n)i
y1(n) = hx(m);  (m� 2n)i:

The synthesis bank that consists of synthesis �lters g0(n) =
'(n) and g1(n) =  (n) constructs an approximation of x(n)
(IDWT) by computing (6). Therefore, the solutions of the
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Figure 1: Diagram of the two band �lter bank.

quadratic equations (4) and (5) construct a complete or-
thonormal basis for the non-degenerate space �, if and only
if the associated �lter bank is an orthogonal perfect recon-
struction �lter bank.

3. DESIGN METHODOLOGY

In our construction, we represent every sequence x(n) by a
polynomial in a polynomial ring F(z) over the �eld F as:
X(z) =

P
x(n)z�n where z�1 is an undetermined variable.

Then the polynomial representation of the convolution of
two sequences x(n) and h(n) can be written as X(z)H(z)
in which the arithmetic is done over the �eld F . Using this
polynomial representation, we can represent the �lter bank
in Fig. 1 with its polyphase components as Fig. 2.

Like the real �eld case, we can easily verify that in any
�nite �eld the scaling function and the mother wavelet of
the orthogonal wavelet transform have even length [9]. Con-
sequently the �lters are of odd orders. Now, suppose that
Hs(z), s = 0; 1, has order 2N + 1 with its polyphase com-
ponents as Es0(z) and Es1(z). Using the polyphase repre-
sentation for a 2-band orthogonal �lter bank, we write the
polyphase components of H1(z) in terms of the polyphase
components of H0(z) as [9]:

E10(z) = z
�N

E01(z
�1) ; E11(z) = �z�NE00(z

�1): (7)

In a perfect reconstruction orthogonal �lter bank, the
polyphase matrix E(z) = [Esi(z)], 0 � s; i � 1 must satisfy
the paraunitary constraint ET (z�1)E(z) = I. Therefore,
the necessary and su�cient condition for an orthogonal per-
fect reconstruction �lter bank is obtained as:

E00(z)E00(z
�1) +E01(z)E01(z

�1) = 1: (8)

Here, E00(z) and E01(z) are polynomials in the polynomial
ring F(z) de�ned as:

E00(z) =

MX
i=0

e0iz
�i
; e00 6= 0 ; e0i 2 GF (p

r)

E01(z) =

NX
i=0

e1iz
�i
; e1N 6= 0 ; e1i 2 GF (p

r)

where M is a positive integer satisfying M � N .
In (8), we do not require any additional constraints on

the polyphase components of H0(z). The properties of the
�lters in �lter banks over �nite �elds (equivalently, the char-
acteristic of the two subspaces V0 and W0) will be deter-
mined by the applications that these new wavelet trans-
forms are formed for. From (8) we conclude that:

e1i = 0 i = 0; : : : ; N �M � 1: (9)
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Figure 2: Polyphase representation of two band �lter bank.

Moreover, with some manipulation we can show that (8) is
equivalent to:

A(z)Ac(z) +B(z)Bc(z) = z
M (10)

where A(z) and B(z) are polynomials in F(z) de�ned as:

A(z) =

MX
i=0

aiz
i
; a0 6= 0 ; B(z) =

MX
i=0

biz
i
; bM 6= 0:

(11)
In our notation, the superscript \c" means the reciprocal
of the polynomial. The reciprocal polynomial of G(z) of
degreeM is de�ned as Gc(z) = zMG(z�1). The coe�cients
of two polynomials A(z) and B(z) are related to those of
the polyphase components E00(z) and E01(z) by:

ai = e0i ; bi = e1(N�M+i) for i = 0; : : : ;M: (12)

In the following, we give a general procedure to con-
struct a 2-band orthogonal perfect reconstruction �lter bank
over GF (pr). Assume that the desired �lter order is 2N+1.

� Set M = 1

� Find every pair of polynomials A(z) and B(z) over
the polynomial ring F(z) that satisfy (10). Each pair
of polynomials speci�es the �lters of the �lter bank
by (9) and (12).

� Increment M by one and repeat the previous step as
long as M � N .

The above procedure generates all possible orthogonal per-
fect reconstruction �lter banks. Therefore, in this full search
method we start with A(z) and apply an appropriate method
such as Berlekamp's algorithm to factorize zM �A(z)Ac(z)
over the �eld F [7]. As an alternative to the full search
method using polynomial factorization algorithms, we also
provide a method to �nd the majority of the possible so-
lutions for the �elds with characteristic 2 (i.e, GF (2r)).
It is worth noting that if the pair fA(z); B(z)g constructs
an orthogonal perfect reconstruction �lter bank, then each
of the pairs fAc(z); B(z)g, fA(z); Bc(z)g, fAc(z); Bc(z)g,
fB(z); A(z)g,fBc(z); A(z)g, fB(z); Ac(z)g and fBc(z); Ac(z
)g is a solution as well. However, those pairs may or may
not generate distinct pairs of �lters H0(z) and H1(z).

Example 1: Let us derive all the orthogonal �lter banks
of the lowest nontrivial order, 3, over GF (5). It can be
justi�ed that the only solution pair for (10) is A(z) = 2+2z
and B(z) = 3 + 2z that constructs four distinct orthogonal
perfect reconstruction �lter banks. For one set of solutions,
the �lters of the analysis bank are:�

H0(z) = 2 + 3z�1 + 2z�2 + 2z�3

H1(z) = 2 + 3z�1 + 3z�2 + 3z�3:



Table 1: All Orthogonal Perfect Reconstruction

FB Over GF (2) up to order eleven.

M Order H0(z) H1(z)

2 5 37 3B
2 7 9D B9
2 9 235 2B1
4 9 3EF 3DF
4 9 323 313
2 11 895 A91
4 11 989 919
4 11 BED B7D
5 11 DE7 E7B
5 11 DB7 EDB

3.1. 2-Band Orthogonal Filter Banks Over GF (2r)

Fields with characteristic 2 have the property that 2k = 0
for any k in GF (2r). This property enables us to obtain
the symmetric solutions of (10), as we explain later.

Example 2: Let us determine all the orthogonal �lter
banks of the lowest nontrivial order, 3, over GF (2r). With-
out loss of generality, we can consider H0(z) as a monic
polynomial, and consequently B(z) is a monic polynomial
of degree one. It can be veri�ed that the general solution
for (10) is:

�
A(z) = a(1 + a)�1 + az

B(z) = a2(1 + a)�1 + z
a 6= 1 ; a 2 GF (2r):

Using this solution, we can construct the orthogonal �lter
bank of order 3 over GF (23). In order to construct the ex-
tension �eld GF (23), let us choose the primitive polynomial
q(y) = 1+ y + y3 as an irreducible polynomial over GF (2).
Then, by arbitrarily choosing a = 2 (the polynomial rep-
resentation of this number in the extension �eld is a = y),
the �lters are speci�ed as:�

H0(z) = 7 + 5z�1 + 2z�2 + z�3

H1(z) = 1 + 2z�1 + 5z�2 + 7z�3:

In the �eld GF (2r) we can rewrite (10) as A(z)Ac(z) +
zM = B(z)Bc(z) and we look for the pair of polynomials of
the form (11) satisfying this equation for any M � N . In
�elds with characteristic 2, wheneverM is an even number,
the above equation can be written as:

fA(z) + z
M=2gfA(z) + z

M=2gc = B(z)Bc(z)

provided that A(z) is a symmetric polynomial, A(z) =

Ac(z). Obviously in this case any B(z) equal to A(z)+zM=2

is also a symmetric polynomial.
Fact 2: If M is an even number, the polynomial pair

A(z) and A(z) + zM=2 is a solution to (10) over GF (2r),
Where A(z) is any arbitrary symmetric polynomial of de-
gree M with a nonzero constant coe�cient.

Table 1 gives all the possible distinct orthogonal perfect
reconstruction �lter banks up to order eleven over GF (2).
The �rst column of Table 1 lists the values of M for which

a solution for (10) can be obtained. The second, third and
and fourth columns show the �lter order, the coe�cients of
H0(z) and H1(z), respectively. Note that the �lter coe�-
cients are represented in Hexadecimal (by padding su�cient
zeroes to the left) form with the LSB bit as the coe�cient of
the highest degree. We include the nonsymmetric solutions
in this Table as well. It can be veri�ed that there exist some
solutions only for M = 5.

4. CONCLUSION

In this paper, we have studied the theory of the wavelet
transform of discrete-time signals in non-degenerate vector
spaces. The conditions that the scaling function and the
mother wavelet should meet were described. Furthermore,
we present a design methodology for orthogonal two chan-
nel �lter banks over �nite �elds. In particular, we pointed
out a method to construct these �lter banks over the �elds
with characteristic 2. The low complexity of the �nite �eld
wavelet transform makes it a promising tool for communi-
cation and signal processing applications.
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