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Abstract|We introduce a blind algorithm for the joint
estimation of symbol timing and carrier frequency o�set in
pulse shaping OFDM systems. The proposed estimator ex-
ploits the cyclostationarity of the received OFDM signal
and can be seen as an extension of the Gini-Giannakis esti-
mator [1] for single-carrier systems. An important feature of
our method is the capability to perform a carrier frequency
acquisition over the entire bandwidth of the OFDM signal.
Furthermore, our estimator can be applied even if no cyclic
pre�x is used. We provide simulation results demonstrating
the performance of the new estimator.

1. INTRODUCTION AND OUTLINE

Orthogonal frequency division multiplexing (OFDM)
systems [2]-[6] are in general more sensitive to symbol tim-
ing errors and carrier frequency o�sets than single-carrier
systems [7]. In an OFDM system synchronization errors
cause both intersymbol-interference (ISI) and intercarrier-
interference (ICI). Most OFDM time-frequency o�set esti-
mators proposed in the literature require pilot symbols (e.g.
[8, 9]). However, the use of pilot symbols lowers the data
rate. Therefore, methods that do not need pilot symbols
are desirable. Such estimators [10, 11] make use of the re-
dundancy introduced by the cyclic pre�x (CP).

In this paper, we present a blind algorithm1 for the joint
estimation of symbol timing and carrier frequency o�set in
pulse shaping OFDM systems. Our estimator exploits the
cyclostationarity of the received OFDM signal and can be
viewed as an extension of the Gini-Giannakis estimator [1]
for single-carrier systems. We shall next summarize impor-
tant novel features of the proposed method:

� it applies to pulse shaping OFDM systems with arbi-
trary pulse shapes.

� it can be used in OFDM systems employing arbitrary
time-frequency guard regions.

� it is capable of performing a carrier frequency acqui-
sition over the entire bandwidth of the OFDM signal.

� it applies to time-dispersive environments.

� it does not need a CP (in this case the estimators
proposed in [10, 11] would break down).

� it is FFT-based and hence computationally eÆcient.

The paper is organized as follows. In Section 2 we brie
y
describe OFDM systems employing a time-frequency guard
region [12, 13]. Section 3 introduces the new estimator and
discusses its properties. Section 4 presents simulation re-
sults, and �nally Section 5 concludes the paper.

1The algorithm is blind because it does not need pilot sym-
bols. In fact, it does not even need a CP.

2. OFDM SYSTEMS EMPLOYING A
TIME-FREQUENCY GUARD REGION

Time-frequency guard region. The baseband equiv-
alent of a pulse shaping OFDM system is given by

x(t) =

N�1X
k=0

1X
l=�1

ck;lg(t� lT ) ej2�kF (t�lT );

where T is the symbol duration, F denotes the subcarrier
spacing, N is the number of carriers, g(t) is the transmitter
pulse shaping �lter, and ck;l denotes the data symbols. The

reconstructed symbols ĉk;l are obtained as ĉk;l =


x; hk;l

�
;

where hk;l(t) = h(t�lT )ej2�kF (t�lT ) with the receiver pulse
shaping �lter h(t). In an OFDM system employing a CP [3]
g(t) is a rectangular pulse of duration T , h(t) is a rectan-
gular pulse of duration T � Tc with Tc denoting the length
of the CP (typically Tc = 0:25T ), and F = 1

T�Tc
, so that

TF > 1. The CP acts as a temporal guard interval and
allows for equalization using simple divisions [3].

In this paper we consider pulse shaping OFDM systems
with TF � 1 and g(t) and h(t) satisfying the biorthogo-

nality relation


g; hk;l

�
= Æ[k]Æ[l] (this guarantees perfect

demodulation in the absence of a channel). For TF > 1,
the system is said to employ a time-frequency guard region
[12, 13]. In fact, OFDM systems using a CP [3] can be seen
as a special case thereof with the time-frequency guard re-
gion being a temporal guard region only. Note, however,
that TF > 1 can not only be achieved by insertion of a
CP; for example, one can introduce spectral guard regions
by spacing the subcarriers further apart to avoid ICI in
frequency-dispersive environments. Although the use of a
time-frequency guard region reduces spectral eÆciency [6],
the resulting advantages such as increased dispersion ro-
bustness [6, 13], pulse shaping �lters with improved time-
frequency localization [6, 13], and the possibility to per-
form blind equalization [14], generally motivate its use. We
�nally note that pulse shaping is especially important for
reducing out-of-band emission in wireless OFDM.

Discrete-time model. Assuming that the total band-
width of the OFDM signal x(t) is approximately NF
and setting2 TF = M

N
� 1, a critically sampled ver-

sion of x(t) is obtained as x[n] =
PN�1

k=0

P1

l=�1
ck;lg[n �

lM ]ej
2�
N
k(n�lM); where x[n]

4
= x

�
n
NF

�
and g[n]

4
= g

�
n
NF

�
.

The reconstructed data symbols are given by ĉk;l =


x; hk;l

�
with hk;l[n] = h[n�lM ]ej

2�
N
k(n�lM). The real-valued pulses

2Note that usually N is very large, so that this choice for TF
does not impose a severe restriction on the possible values of TF .



g[n] and h[n] are biorthogonal if their cross-ambiguity func-

tion A(g;h)[k; �) =
P1

n=�1
g[n]h[n�k]e�j2�n� [15] satis�es

A(g;h)
h
lM;

k

N

�
= Æ[l]Æ[k]: (1)

For h[n] = g[n] Eq. (1) reduces to A(g;g)
�
lM; k

N

�
= Æ[l]Æ[k]

with the auto-ambiguity function A(g;g)[k; �) of g[n] [15].

3. BLIND ESTIMATION OF TIMING ERRORS
AND CARRIER FREQUENCY OFFSETS

For the sake of simplicity, we shall �rst formulate the
new estimator in the absence of a channel. The extension to
time-dispersive environments is provided later in this sec-
tion.

Assumptions. The received OFDM signal is given by

r[n] = x[n� ne]e
j(2��en+�) + �[n]; (2)

where ne 2ZZ is the timing o�set, �e denotes the carrier
frequency o�set, � is the initial phase, and �[n] is a wide-
sense-stationary noise process, independent of ck;l. The
data symbols ck;l are drawn from a �nite-alphabet complex
constellation and satisfy3 Efck;lc

�
k0;l0g = �2cÆ[k� k0]Æ[l� l0].

We furthermore assume that the subcarriers are trans-
mitted with di�erent powers. The corresponding subcar-
rier weighting function is given by w[k], i.e., the symbols
on the k-th subcarrier are multiplied by4 w[k]. This simple
modi�cation will be seen later to allow a carrier frequency
acquisition over the entire bandwidth of the OFDM signal.
The OFDM transmit signal is now given by

x[n] =

N�1X
k=0

1X
l=�1

ck;lw[k]g[n� lM ]ej
2�
N
k(n�lM): (3)

In the receiver, the data symbols can be retrieved according

to ĉk;l =


r;

hk;l
w[k]

�
:

Cyclostationarity. We shall next show that under
quite general conditions the received signal r[n] in (2) is
cyclostationary (CS) [16], which constitutes the basis for
our estimation algorithm. The correlation function of a
nonstationary stochastic process is de�ned as cr[n; � ] =
Efr[n]r�[n � � ]g with � being an integer lag parameter.5

The signal r[n] is said to be second-order CS with period
M if cr[n; � ] = cr[n + M; � ] [16, 1]. Using (2) and (3),
the correlation function of the received OFDM signal r[n]
is given by [17]

cr[n; � ] = �2ce
j2��e��N [� ]

1X
l=�1

g[n� ne � lM ]

g[n� � � ne � lM ] + c�[� ]; (4)

where c�[� ] = Ef�[n]��[n � � ]g is a function of � only be-
cause the noise process �[n] was assumed to be stationary,

and �N [� ] =
PN�1

k=0
jw[k]j2ej

2�
N
k� is the N -point IDFT of

jw[k]j2. From (4) it easily follows that cr[n; � ] isM -periodic
in n, i.e., cr[n; � ] = cr[n+M; � ] for every � . Now, if cr[n; � ]
depends on n, the received OFDM signal r[n] is CS with
periodM . There are several possibilities to introduce cyclo-
stationarity in an OFDM signal, either by the use of time-
frequency guard regions (for example a CP), by employing

3E denotes the expectation operator.
4The w[k] need not be real-valued; rather it is important that

jw[k]j is di�erent for di�erent subcarriers.
5For stationary processes the correlation function cr[n; � ] de-

pends on � only.

pulse shaping, or by using di�erent transmit powers on the
subcarriers [17]. If no time-frequency guard region is used
(i.e. N =M) one can still evoke cyclostationarity by using
a pulse shaping �lter g[n] (i.e. a �lter g[n] other than the
rectangular function). One can even show that for N =M
and no pulse shaping (i.e. g[n] is a rectangular pulse) the
OFDM signal r[n] is cyclostationary if the subcarriers are
transmitted with di�erent powers. Therefore, the estima-
tors to be presented below can be applied even if no CP
is used, in which case methods relying on the redundancy
introduced by the CP such as those in [10, 11] would break
down6.

For a �xed lag � , the M -periodic correlation function
cr[n; � ] can be expanded into a Fourier series with coeÆ-
cients given by

Cr[k; � ] =
1

M

M�1X
n=0

cr[n; � ]e
�j 2�

M
kn:

Using (4) it follows after some manipulations that [17]

Cr[k; � ] =
�2c
M

ej2��e�e�j
2�
M

kne�N [� ]A
(g;g)

h
�;

k

M

�
+ c�[� ]Æ[k]: (5)

Since �2c , g[n], w[k] and hence �N [� ] are known at the re-
ceiver their in
uence can be eliminated by de�ning

C[k; � ] =

(
Cr[k;� ]

�2c
M

�N [� ]A(g;g)[�; kM )
; [k; � ] 2 I;

0; else;
(6)

where I := f[k; � ]j�N [� ]A
(g;g)

�
�; k

M

�
6= 0g. We thus have

C[k; � ] = ej2��e�e�j
2�
M

kne +
c�[� ]

�2c
M
�N [� ]A(g;g)

�
�; k

M

�Æ[k] (7)

for [k; � ] 2 I. The e�ect of the additive noise-term can be
eliminated by considering C[k; � ] for k = 1; 2; :::;M�1 only.

Estimation of symbol timing and carrier fre-
quency o�set. Now, following a procedure �rst suggested
by Gini and Giannakis for single-carrier systems [1], the
carrier frequency o�set can be retrieved as

�e =
argfC[k; � ]C[M � k; � ]g

4��
; k 2 [1; Lk]; j� j 2 [1; L� ];

(8)
where [k; � ] 2 I, arg denotes the unwrapped phase, Lk =
M
2

for M even and Lk = M�1
2

for M odd, and L� is the
maximum � in I. Given the carrier frequency o�set �e, the
timing error can be obtained as

ne=�
M

2�k
argfC[k; � ]e�j2��e�g; k 2 [1;M�1]; j� j 2 [0; L� ];

(9)
where again [k; � ] 2 I. From (8) it follows that in order to
avoid ambiguity due to spectral folding we have to require
j4��min�ej < �, where j�minj � 1. Therefore, provided
that j�minj = 1, the maximum allowed frequency o�set is
j�ej <

1
4
, i.e., half of the bandwidth of the OFDM signal

x[n]. Similar arguments reveal that the timing o�set has to
satisfy jnej < Lk, i.e., roughly speaking the timing o�set
can be corrected over one symbol interval. Estimation of �e
and ne according to (8) and (9), respectively, will in general
require phase unwrapping. The cyclic spectrum approach
discussed below will be shown to avoid phase unwrapping.
Moreover, it allows a full range carrier frequency acquisition
(i.e. j�ej <

1
2
).

6OFDM systems not making use of a CP have been proposed
in [18] for wireless high-data-rate applications. Note that the use
of a CP lowers the data rate and results in a loss of SNR.



The cyclic spectrum approach. We shall next
present an alternative method for estimating �e and ne
from r[n]. This approach �rst suggested in [1] for single-
carrier systems uses the cyclic spectrum which is de�ned
as the Fourier transform of C[k; � ] with respect to � , i.e.,

S[k; f) =
P1

�=�1
C[k; � ]e�j2��f . From (7) we obtain

S[k; f) = e�j
2�
M

kne
sin
�
2�(�e � f)

�
L� +

1
2

��
sin(�(�e � f))

;

where we assumed that k � 1 and [k; � ] 2 I for j� j � L� .
The carrier frequency o�set can now be obtained as

�e = argmaxjf j< 1
2
jS[k; f)j: (10)

From (10) it follows that ambiguity due to spectral fold-
ing is avoided if j�ej < 1

2
, which means that the carrier

frequency acquisition range is the entire bandwidth of the
OFDM signal x[n]. For given carrier frequency o�set �e the
timing o�set can be retrieved as

ne = �
M

2�k
argfS[k; �e)g: (11)

Equal transmit power on all subcarriers. We shall
next specialize our results to the case where all subcarriers
use the same transmit power7. Here, �N [� ] = NÆN [� ] with
ÆN [� ] denoting an N -periodic pulse train with amplitude 1.
It follows from (6) that C[k; � ] = 0 for � 6= rN with r2ZZ.
Therefore, j�minj � N which using j4��min�ej < � implies
j�ej <

1
4N

for j�minj = N . The carrier frequency acquisition
range is therefore restricted to half the subcarrier spacing.
Assuming that k 2 [1;M � 1] is such that [k; � ] 2 I for
� = rN with r 2ZZ, the cyclic spectrum is given by

S[k; f) = e�j
2�
M

kne

N�1X
l=0

sin
�
2�
�
�e �

�
f � l

N

�� �
L� +

1
2

��
sin
�
�
�
�e �

�
f � l

N

��� ;

which shows that using the cyclic spectrum approach the
maximum allowable carrier frequency o�set is one subcar-
rier spacing, i.e., j�ej <

1
N
. This result demonstrates that

the use of di�erent subcarrier transmit powers is crucial for
increasing the carrier frequency acquisition range. In par-
ticular, g[n] and w[k] should be chosen such that j�minj = 1.

Specialization to systems employing a CP. Let us
assume that the length of the CP is P , i.e., M = N + P .
The �lter g[n] is a rectangular pulse of lengthM and h[n] is
a rectangular pulse of length N . Inserting into (4) it can be
shown that r[n] is CS with period M [14, 17]. Symbol tim-
ing and carrier frequency o�set can now be retrieved using
one of the methods described above. The cyclostationarity
induced by the CP has been exploited previously for blind
equalization [14].

Estimation in presence of a channel. We shall
next adapt our estimator to time-dispersive environments.
Assume that the channel impulse response d[n] is known at
the receiver or has been identi�ed previously. A somewhat
lengthy calculation reveals that [17]

Cr[k; � ] =
�2c
M

ej2��e�e�j
2�
M

kne Â(g;g;d)
h
�;

k

M

�
+ c�[� ]Æ[k];

where Â(g;g;d)[�; �) =X
s

d[s]
X
s0

d[s0]�N [s
0�s+� ]

X
n

g[n�s]g[n�s0�� ]e�j2�n�:

Since the channel impulse response d[n], the transmitter
pulse shaping �lter g[n], and �2c are all known at the re-

ceiver, we can de�ne C[k; � ] = Cr[k;� ]

Â(g;g;d)[�; kM )
�2c
M

=

7For the sake of simplicity we assume that jw[k]j = 1 for
k = 0; 1; :::;N � 1.

ej2��e�e�j
2�
M

kne +
M

�2c
c�[� ]Â

(g;g;d)�1
h
�;

k

M

�
Æ[k]

for [k; � ] 2 I with I := f[k; � ]jÂ(g;g;d)
�
�; k

M

�
6= 0g and

C[k; � ] = 0 else. Finally, �e and ne can be retrieved using
(8) and (9) or (10) and (11), respectively.

Estimation of cyclic statistics. In practice the cyclic
statistics Cr[k; � ] can be estimated from a �nite data record
of length L according to [1]

Ĉr[k; � ] =
1

L

L�1X
n=0

r[n]r�[n� � ]e�j
2�
M

kn: (12)

For a discussion of the statistical properties of this estimator
the interested reader is referred to [1]. Note that (12) is
basically an FFT of the signal r[n]r�[n� � ].

Estimators. Similar to the single-carrier case, estima-
tors for �e and ne can be obtained from (8) and (9) by
averaging over I according to

�̂e =
1

4�jI0j

X
[k;� ]2I0

1

�
argfĈ[k; � ]Ĉ[M � k; � ]g (13)

n̂e = �
M

2�jI00j

X
[k;� ]2I00

1

k
argfĈ[k; � ]e�j2��̂e�g; (14)

where Ĉ[k; � ] is obtained from (6) by replacing Cr[k; � ] with

Ĉr[k; � ], I
0 = I n fk = 0; � = 0g (i.e. the set I except for

the k = 0 axis and the � = 0 axis), and I00 = I n fk = 0g.
Similarly, estimators based on the cyclic spectrum can

be obtained from (10) and (11) as

�̂e =
1

jKj

X
k2K

argmaxjf j< 1
2
jŜ[k; f)j (15)

n̂e = �
M

2�jKj

X
k2K

1

k
argfŜ[k; �̂e)g; (16)

where K denotes the set of all k � 1 used in (15) and (16),

respectively, and Ŝ[k; f) is obtained by windowing Ĉ[k; � ]
with W [� ] and taking the Fourier transform as [1]

Ŝ[k; f) =

L�X
�=�L�

W [� ]Ĉ[k; � ]e�j2��f :

4. SIMULATION RESULTS

In this section we provide simulation results demon-
strating the performance of the proposed estimators. We
simulated an OFDM system with N = 8 channels, M = 16,
and pulse shaping �lters h[n] = g[n] of length 96. The
data symbols were i.i.d. 4-PSK symbols with �2c = 2. The
signal-to-noise-ratio (SNR) was de�ned as SNR=�2c=�

2
�,

where �2� is the variance of the white noise process �[n].
All results were obtained by averaging over 200 Monte
Carlo trials. Each realization consisted of 1024 data sym-
bols. Furthermore, the estimates of the cyclic statis-
tics were obtained using the entire data record in (12).
The subchannel weighting vector was chosen as w =
[1:1 2:0 1:4 1:33 1:0 0:6 0:8 1:2].

Simulation Example 1. In the �rst simulation ex-
ample we computed the bias and the mean squared error
(MSE) of the carrier frequency o�set estimator (13) and the
timing o�set estimator (14) for ne = 2 and �e = 0:0625, i.e.,
half the subcarrier spacing. Figs. 1 (a) and (b) show the

bias and the MSE, respectively, of �̂e versus �e as a func-
tion of the SNR in dB. Figs. 1 (c) and (d) show the bias



and the MSE, respectively, of n̂e
M

versus ne
M

as a function of
the SNR. We can see that our estimator performs well even
for small SNR values.
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Fig. 1: Bias and MSE of frequency and timing o�set
estimators (13) and (14), respectively, versus SNR/dB:

a) bias and b) MSE of �̂e, c) bias and d) MSE of n̂e=M .

Simulation Example 2. In the second simulation ex-
ample (see Fig. 2) we computed the bias and the MSE of
the carrier frequency o�set estimator (13) at an SNR of 9dB
as a function of the frequency o�set.8
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Fig. 2: (a) Bias and (b) MSE 9 of �̂e according to (13)
versus �e as a function of �e.

Simulation Example 3. In the last simulation exam-
ple, we consider estimation of the carrier frequency o�set

using the cyclic spectrum approach. Fig. 3 shows jŜ[1; f)j
for �e = �0:45.
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Fig. 3: Magnitude of the cyclic spectrum Ŝ[1; f).

8Recall that the acquisition range of the estimator (13) is
restricted to j�ej < 0:25. For j�ej close to 0:25, however, the
estimator gets inaccurate. We therefore simulated the range
j�ej � 0:2 only.

9For �e = 0 the MSE of �̂e was in the order of MATLAB's
computational accuracy.

5. CONCLUSION

We introduced a blind time-frequency o�set estimator
for pulse shaping OFDM systems. The proposed method
is computationally eÆcient and allows to perform a car-
rier frequency acquisition over the entire bandwidth of the
OFDM signal. Furthermore, it needs neither pilot sym-
bols nor a CP. Our estimator exploits the cyclostationarity
of the received signal and can be seen as an extension of
the Gini-Giannakis estimator [1] to the multi-carrier case.
We �nally provided simulation examples demonstrating the
performance of the new estimator.
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