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Abstract—We introduce a blind algorithm for the joint
estimation of symbol timing and carrier frequency offset in
pulse shaping OFDM systems. The proposed estimator ex-
ploits the cyclostationarity of the received OFDM signal
and can be seen as an extension of the Gini-Giannakis esti-
mator [1] for single-carrier systems. An important feature of
our method is the capability to perform a carrier frequency
acquisition over the entire bandwidth of the OFDM signal.
Furthermore, our estimator can be applied even if no cyclic
prefix is used. We provide simulation results demonstrating
the performance of the new estimator.

1. INTRODUCTION AND OUTLINE

Orthogonal frequency division multiplexing (OFDM)
systems [2]-[6] are in general more sensitive to symbol tim-
ing errors and carrier frequency offsets than single-carrier
systems [7]. In an OFDM system synchronization errors
cause both intersymbol-interference (ISI) and intercarrier-
interference (ICI). Most OFDM time-frequency offset esti-
mators proposed in the literature require pilot symbols (e.g.
[8, 9]). However, the use of pilot symbols lowers the data
rate. Therefore, methods that do not need pilot symbols
are desirable. Such estimators [10, 11] make use of the re-
dundancy introduced by the cyclic prefix (CP).

In this paper, we present a blind algorithm" for the joint
estimation of symbol timing and carrier frequency offset in
pulse shaping OFDM systems. Our estimator exploits the
cyclostationarity of the received OFDM signal and can be
viewed as an extension of the Gini-Giannakis estimator [1]
for single-carrier systems. We shall next summarize impor-
tant novel features of the proposed method:

e it applies to pulse shaping OFDM systems with arbi-
trary pulse shapes.

e it can be used in OFDM systems employing arbitrary
time-frequency guard regions.

e it is capable of performing a carrier frequency acqui-
sition over the entire bandwidth of the OFDM signal.

e it applies to time-dispersive environments.

e it does not need a CP (in this case the estimators
proposed in [10, 11] would break down).

e it is FFT-based and hence computationally efficient.

The paper is organized as follows. In Section 2 we briefly
describe OFDM systems employing a time-frequency guard
region [12, 13]. Section 3 introduces the new estimator and
discusses 1ts properties. Section 4 presents simulation re-
sults, and finally Section 5 concludes the paper.

IThe algorithm is blind because it does not need pilot sym-
bols. In fact, it does not even need a CP.

2. OFDM SYSTEMS EMPLOYING A
TIME-FREQUENCY GUARD REGION

Time-frequency guard region. The baseband equiv-
alent of a pulse shaping OFDM system is given by
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where T is the symbol duration, F' denotes the subcarrier
spacing, N is the number of carriers, g(t) is the transmitter
pulse shaping filter, and ci,; denotes the data symbols. The

reconstructed symbols ¢é,; are obtained as ¢, = <a:, hk,z>,

where hg i (t) = h(t—IT)e? 2™ *F =T with the receiver pulse
shaping filter A(¢). In an OFDM system employing a CP [3]
g(t) is a rectangular pulse of duration T', h(t) is a rectan-
gular pulse of duration T' — T, with T¢ denoting the length
of the CP (typically T. = 0.25T), and F = —L1—, so that

T—T.’
TF > 1. The CP acts as a temporal guard interval and
allows for equalization using simple divisions [3].

In this paper we consider pulse shaping OFDM systems
with TF > 1 and g(¢) and h(t) satisfying the biorthogo-
nality relation <g,hk,z> = 4[k]d[l] (this guarantees perfect
demodulation in the absence of a channel). For TF > 1,
the system is said to employ a time-frequency guard region
[12, 13]. In fact, OFDM systems using a CP S]gcan be seen
as a special case thereof with the time-frequency guard re-
gion being a temporal guard region only. Note, however,
that TF > 1 can not only be achieved by insertion of a
CP; for example, one can introduce spectral guard regions
by spacing the subcarriers further apart to avoid ICI in
frequency-dispersive environments. Although the use of a
time-frequency guard region reduces spectral efficiency [6],
the resulting advantages such as increased dispersion ro-
bustness [6, 13], pulse shaping filters with improved time-
frequency localization [6, 13], and the possibility to per-
form blind equalization [14], generally motivate its use. We
finally note that pulse shaping is especially important for
reducing out-of-band emission in wireless OFDM.

Discrete-time model. Assuming that the total band-

width of the OFDM signal z(t) is approximately NF

and setting? TF = % > 1, a critically sampled ver-
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The reconstructed data symbols are given by ¢, ; = <a:, hk,l>

with Ay [n] = h[n—IM]e? Fr(n=IM) The real-valued pulses

sion of z(¢) is obtained as z[n] =

2Note that usually N is very large, so that this choice for TF
does not impose a severe restriction on the possible values of TF'.



g[n] and h[n] are biorthogonal if their cross-ambiguity func-
tion AWMk ) =3 g[n]h[n—kle 72" [15] satisfies

Alo:h) [lM, %) = S[1]5[k]. (1)

For h[n] = g[n] Eq. (1) reduces to A9 [lM, %) = 0[l])o[k]
with the auto-ambiguity function A“9) [k, ) of g[n] [15].

3. BLIND ESTIMATION OF TIMING ERRORS
AND CARRIER FREQUENCY OFFSETS

For the sake of simplicity, we shall first formulate the
new estimator in the absence of a channel. The extension to
time-dispersive environments is provided later in this sec-
tion.

Assumptions. The received OFDM signal is given by

rin] = efn — nele’ *7" ) 4 pln), (2)

where n. € Z is the timing offset, 6. denotes the carrier
frequency offset, ¢ is the initial phase, and p[n] is a wide-
sense-stationary noise process, independent of ci;. The
data symbols ¢y, are drawn from a finite-alphabet complex
constellation and satisfy® £{ck.ics  } = 026[k — K161 —1'].

We furthermore assume that the subcarriers are trans-
mitted with different powers. The corresponding subcar-
rier weighting function is given by w[k], i.e., the symbols
on the k-th subcarrier are multiplied by* w([k]. This simple
modification will be seen later to allow a carrier frequency
acquisition over the entire bandwidth of the OFDM signal.
The OFDM transmit signal is now given by
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In the receiver, the data symbols can be retrieved according

t0 Cr,i = < T Zlfkl]>

Cyclostationarity. We shall next show that under
quite general conditions the received signal r[n] in (2) is
cyclostationary (CS) [16], which constitutes the basis for
our estimation algorithm. The correlation function of a
nonstationary stochastic process is defined as cq[n,7] =
E{r[n]r*[n — 7]} with 7 being an integer lag parameter.’
The signal r[n] is said to be second-order CS with period
M if ¢;[n, 7] = ¢[n + M,7] [16, 1]. Using (2) and (3),
the correlation function of the received OFDM signal r[n]
is given by [17]

crn, ] = afeﬁ"o”FN[T] Z gln —ne —IM]
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— IM] + ¢[7], (4)

where ¢,[7] = E{p[n]p”[n — 7]} is a function of 7 only be-
cause the noise process p[n] was assumed to be stationary,
SV wlk][?e? F4T is the N-point IDFT of
|w[k]|?. From (4) it easily follows that c.[n, 7] is M-periodic
in n, i.e., ¢;[n, 7] = ¢;[n+ M, 7] for every 7. Now, if ¢,[n, 7]
depends on n, the received OFDM signal r[n] is CS with
period M. There are several possibilities to introduce cyclo-

stationarity in an OFDM signal, either by the use of time-
frequency guard regions (for example a CP), by employing

gln — 1 —ne

and I'y[7] =

3£ denotes the expectation operator.

4The w[k] need not be real-valued; rather it is important that
|w[k]| is different for different subcarriers.

5For stationary processes the correlation function ¢, [n, 7] de-
pends on 7 only.

pulse shaping, or by using different transmit powers on the
subcarriers [17]. If no time-frequency guard region is used
(i.e. N = M) one can still evoke cyclostationarity by using
a pulse shaping filter g[n] (i.e. a filter g[n] other than the
rectangular function). One can even show that for N = M
and no pulse shaping (i.e. g[n] is a rectangular pulse) the
OFDM signal r[n] is cyclostationary if the subcarriers are
transmitted with different powers. Therefore, the estima-
tors to be presented below can be applied even if no CP
is used, in which case methods relying on the redundancy

introduced by the CP such as those in [10, 11] would break

down®.

For a fixed lag 7, the M-periodic correlation function
¢r[n, 7] can be expanded into a Fourier series with coeffi-
cients given by

Using (4) it follows after some manipulations that [17]
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Since o2, g[n], w[k] and hence Tw[r] are known at the re-
ceiver their influence can be eliminated by defining
ekl k] e T,
Clk, 7] =< ZernlrlAle9)r, k) (6)
0, else,

where Z := {[k, 7]|Tn[r]A&9 [7‘, %) # 0}. We thus have

Clk, 7] = e920emg=iFhne 4 ol7] 3[K] (7)
% I [r]A@9) [1, &)

for [k, 7] € Z. The effect of the additive noise-term can be

eliminated by considering C[k, 7] for k = 1,2, ..., M —1 only.
Estimation of symbol timing and carrier fre-

quency offset. Now, following a procedure first suggested

by Gini and Giannakis for single-carrier systems %1 , the

carrier frequency offset can be retrieved as

arg{C[k, TIC[M — Fk, ]}

4t

0. =

7k € [LLkL |T| € [LLT];

8
where [k, 7] € Z, arg denotes the unwrapped phase, Lk(:)
% for M even and L, = M2_1 for M odd, and L, is the

maximum 7 in Z. Given the carrier frequency offset 6, the
timing error can be obtained as

M e {Cll, 7o), k€ [1, M—1], 7] € 0, L],

2mk

9)
where again [k, 7] € Z. From (8) it follows that in order to
avoid ambiguity due to spectral folding we have to require
|47 Tminbe| < m, where |Tmin| > 1. Therefore, provided
that |Tmin| = 1, the maximum allowed frequency offset is
|| < %, i.e., half of the bandwidth of the OFDM signal
z[n]. Similar arguments reveal that the timing offset has to
satisfy |ne| < L, i.e., roughly speaking the timing offset
can be corrected over one symbol interval. Estimation of 6.
and n. according to (8) and (9), respectively, will in general
require phase unwrapping. The cyclic spectrum approach
discussed below will be shown to avoid phase unwrapping.
Moreover, it allows a full range carrier frequency acquisition
(ie. 0] < ).

Ne =—

60FDM systems not making use of a CP have been proposed
in [18] for wireless high-data-rate applications. Note that the use
of a CP lowers the data rate and results in a loss of SNR.



The cyclic spectrum approach. We shall next
present an alternative method for estimating 6. and n.
from r[n]. This approach first suggested in [1] for single-
carrier systems uses the cyclic spectrum which is defined
as the Fourier transform of C[k, 7] with respect to 7, i.e.,

Slk, f) = 3% __Clk, 7le=*"/. From (7) we obtain
i 1
Sl f) = e-idpin. S 27O D) (- + 5))

sin(m(fe — f)) ’
where we assumed that k > 1 and [k, 7] € Z for |7]| < L,.
The carrier frequency offset can now be obtained as

f = argmax; . %|S[k, Hl- (10)

From (10) it follows that ambiguity due to spectral fold-
ing is avoided if |fe| < %, which means that the carrier

frequency acquisition range is the entire bandwidth of the
OFDM signal z[n]. For given carrier frequency offset 6. the
timing offset can be retrieved as

ne = —%arg{S[k,Ge)}. (11)

Equal transmit power on all subcarriers. We shall
next specialize our results to the case where all subcarriers
use the same transmit power’. Here, I'y[r] = Ndx[r] with
dn[r] denoting an N-periodic pulse train with amplitude 1.
It follows from (6) that C[k,7] =0 for 7 # rN with r€ Z.
Therefore, |Tmin| > N which using |[47Tminfe| < 7 implies
6| < ﬁ for |Tmin| = N. The carrier frequency acquisition
range is therefore restricted to half the subcarrier spacing.
Assuming that k € [1, M — 1] is such that [k,7] € T for
T =rN with r € Z, the cyclic spectrum is given by

N-1 .
iazkn, g S0 (27 (0 — (F — 7)) (L- +3))
Sk, f) = e 73Fm N~ —— , ,
= sin(m (- (- %))
which shows that using the cyclic spectrum approach the
maximum allowable carrier frequency offset is one subcar-
rier spacing, i.e., |fc| < % This result demonstrates that
the use of different subcarrier transmit powers is crucial for

increasing the carrier frequency acquisition range. In par-
ticular, g[n] and w[k] should be chosen such that |7, | = 1.

Specialization to systems employing a CP. Let us
assume that the length of the CP is P, i.e., M = N + P.
The filter g[n] is a rectangular pulse of length M and h[n] is
a rectangular pulse of length N. Inserting into (4) it can be
shown that r[n] is CS with period M [14, 17]. Symbol tim-
ing and carrier frequency offset can now be retrieved using
one of the methods described above. The cyclostationarity
induced by the CP has been exploited previously for blind
equalization [14].

Estimation in presence of a channel. We shall
next adapt our estimator to time-dispersive environments.
Assume that the channel impulse response d[n] is known at
the receiver or has been identified previously. A somewhat
lengthy calculation reveals that [17]
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Since the channel impulse response d[n], the transmitter
pulse shaping filter g[n], and ¢? are all known at the re-

ceiver, we can define C[k, 7] = —Selbrl _ —
A(g.g,d)[q—,%)”ﬁc
"For the sake of simplicity we assume that |w[k]| = 1 for

k=0,1,..,N — 1.
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for [k,7] € Z with Z := {[k, 7]]Al99:D [7‘,%) # 0} and
C[k,7] = 0 else. Finally, f. and n. can be retrieved using
(8) and (9) or (10) and (11), respectively.

Estimation of cyclic statistics. In practice the cyclic
statistics C, [k, 7] can be estimated from a finite data record
of length L according to [1]

2

Colk, 7] = % Z rln)r*[n — rle = 3", (12)

For a discussion of the statistical properties of this estimator
the interested reader is referred to [1]. Note that (12) is
basically an FFT of the signal r[n]r*[n — 7].

Estimators. Similar to the single-carrier case, estima-

tors for §. and n. can be obtained from (8) and (9) by
averaging over Z according to

A 1 1 - X
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where C[k, 7] is obtained from (6) by replacing C,[k, 7] with
Crlk,7], T =T\ {k = 0,7 = 0} (i.e. the set Z except for
the k = 0 axis and the 7 = 0 axis), and Z" =Z \ {k = 0}.

Similarly, estimators based on the cyclic spectrum can
be obtained from (10) and (11) as

- 1 S
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N M 1 S j
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where K denotes the set of all k& > 1 used in (15) and (16),
respectively, and S[k, f) is obtained by windowing C[k, 7]
with W[r] and taking the Fourier transform as [1]

L.

Sk, f)=">_ WI[rIClk, 7le >,

r=—Lr

4. SIMULATION RESULTS

In this section we provide simulation results demon-
strating the performance of the proposed estimators. We
simulated an OFDM system with N = 8 channels, M = 16,
and pulse shaping filters h[n] = g[n] of length 96. The
data symbols were i.i.d. 4-PSK symbols with ¢2 = 2. The
signal-to-noise-ratio (SNR) was defined as SNR=o07 /0,
where o} is the variance of the white noise process p[n].
All results were obtained by averaging over 200 Monte
Carlo trials. Each realization consisted of 1024 data sym-
bols. Furthermore, the estimates of the cyclic statis-
tics were obtained using the entire data record in (12).
The subchannel weighting vector was chosen as w =

[1.1 2.0 1.4 1.33 1.0 0.6 0.8 1.2].

Simulation Example 1. In the first simulation ex-
ample we computed the bias and the mean squared error
(MSE) of the carrier frequency offset estimator (13) and the
timing offset estimator (14) for ne = 2 and . = 0.0625, i.e.,
half the subcarrier spacing. Figs. 1 (a) and (b) show the

bias and the MSE, respectively, of 6. versus 6. as a func-
tion of the SNR in dB. Figs. 1 (c¢) and (d) show the bias



and the MSE, respectively, of ”—Nj versus 7% as a function of

the SNR. We can see that our estimator performs well even
for small SNR values.
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Fig. 1: Bias and MSE of frequency and timing offset
estimators (13) and (14), respectively, versus SNR/dB:
a) bias and b) MSE of 0., ¢) bias and d) MSE of fc /M.
Simulation Example 2. In the second simulation ex-
ample (see Fig. 2) we computed the bias and the MSE of
the carrier frequency offset estimator (13) at an SNR. of 9dB
as a function of the frequency offset.®
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Fig. 2: (a) Bias and (b) MSE® of 6. according to (13)
versus B¢ as a function of 6.

Simulation Example 3. In the last simulation exam-
ple, we consider estimation of the carrier frequency offset

using the cyclic spectrum approach. Fig. 3 shows |S[1, f)]
for . = —0.45.
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Fig. 3: Magnitude of the cyclic spectrum S[1, f).

o

8Recall that the acquisition range of the estimator (13) is
restricted to [fc] < 0.25. For |f.| close to 0.25, however, the
estimator gets inaccurate. We therefore simulated the range
|6c] < 0.2 only.

9For . = 0 the MSE of . was in the order of MATLAB’s
computational accuracy.

5. CONCLUSION

We introduced a blind time-frequency offset estimator
for pulse shaping OFDM systems. The proposed method
is computationally efficient and allows to perform a car-
rier frequency acquisition over the entire bandwidth of the
OFDM signal. Furthermore, it needs neither pilot sym-
bols nor a CP. Our estimator exploits the cyclostationarity
of the received signal and can be seen as an extension of
the Gini-Giannakis estimator [1] to the multi-carrier case.
We finally provided simulation examples demonstrating the
performance of the new estimator.
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