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ABSTRACT

We introduce minimax robust time-varying Wiener filters
and show a result that facilitates their calculation. Refor-
mulation in the time-frequency domain yields simple closed-
form expressions of minimaz robust time-frequency Wiener
filters based on three different uncertainty models. For one
of these filters, an efficient implementation using the multi-
window Gabor transform is proposed.

1 INTRODUCTION

We consider the estimation of a nonstationary random sig-
nal s(t) from an observation r(t) = s(t) + n(t), where n(t)
is nonstationary noise uncorrelated with s(t), by means of a
linear, time-varying system H. The resulting mean square
error (MSE) e(H; R, R,,) 2 E{||Hr — s||3} is given by’

e(H; Rs,Ry) = tr{(I-H)R,(I-H)" + HR,H'}. (1)
The MSE is minimized by the time-varying Wiener filter [1]
Hy £ argmin e(H;R;,Rs) = Rs(Rs +Rn) ™, (2)
and the minimal MSE can be expressed as
emin(Rs, Rn) £ e(Hw; Ro, Ry) = tr{Rs(Rs +Rn) "' Rar}.

The Wiener filter’s sensitivity to deviations of the actua)l
correlations from the nominal correlations motivates the use
of minimax robust Wiener filters. This paper extends the
robust Wiener filters proposed in [2]-[5] for stationary pro-
cesses to the nonstationary case (see also [6, 7]). Com-
plementing the introduction of robust time-varying Wiener
filters in [8], Section 2 provides a fundamental result that
facilitates the calculation of such filters. A further simplifi-
cation is achieved in Section 3 by a time-frequency formula-
tion. Explicit expressions of “minimax robust time-frequen-
cy Wiener filters” are derived for three uncertainty models.
Finally, simulation results are presented in Section 4.

2 ROBUST TIME-VARYING WIENER FILTER

By definition, the minimaz robust time-varying Wiener fil-
ter Hgr optimizes the worst-case performance within uncer-
tainty classes S, N for the correlations R, R,:
Hz 2 argmin max e(H;R;,R.,.). (4)
H R,€S
Rp, €N
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!Here, Rs and R, denote the correlation operators of s(t) and
n(t), respectively. The correlation operator R, of a (generally
nonstationary) random process z(t) is the positive (semi-)definite
linear operator whose kernel equals r4 (¢t,t') = E{z(t) z*(¢')}. In
a discrete-time setting, R, would be a matrix.

The uncertainty classes S, A" model our uncertainty about
the actual correlations. All Ry € S are assumed to have the
same trace (mean energy of s(t)) Es = E{||s||3} = tr{Rs},
and similarly for R, € V.

The calculation of Hg simplifies if

min max e(H;R,,R,) = max mine(H;R,,R,), (5)
H RcS R,cS H
R, eN Rnp €N
since ming e(H; Rs, R, ) is achieved by the ordinary Wiener
filter Hw = Rs(Rs+R.,,) ™" in (2). Hence, when (5) is valid,
Hp is equal to the ordinary Wiener filter

Hp = Hjj 2 RY(RV+RE)™

obtained for those correlations RL, RE that are least fa-
vorable in the sense that they maximize emin(Rs,Ryn) =
ming e(H; R, R,,) among all R; € S and R, € NV i.e.,

L pL
(Ry,R;) = arg nax emin(Rs, Rn), (6)
Rp,eN
with emin(Rs, Ry) given by (3).
It can be shown [9] that the pivotal relation (5) holds if
and only if there exists a saddle point of e(H;Rs,Ry), i.e.,
a filter Hy, and correlations RY, RE satisfying

e(HL;Rs,Ry) < e(HL;RI,RY) < e(H;RI,Ry) (7)

for all H and Rs € S, R,, € N. The right-hand inequality
in (7) is trivially satisfied by choosing H;, = H, since Hf,
minimizes e(H; RZ,R%). A necessary and suffient condi-
tion for the left-hand inequality in (7) is provided by the
following theorem whose proof is outlined in the Appendix.

Theorem 2.1. For convezr® wuncertainty classes S, N,
there is e(HL;Rs,R,) < e(HE; REY, REL) with HY =
RL (RSL + RTLL)_1 if and only if RY and RL are least fa-
vorable correlations as defined in (6).

Hence, we have finally simplified the calculation of Hg
to the convex optimization problem (6).

3 ROBUST TIME-FREQUENCY
WIENER FILTER

A further simplification will be achieved by a time-frequen-
cy (TF) reformulation in terms of the Weyl symbol Lu (¢, f)
of a linear time-varying system H [10]-[12] and the Wigner-
Ville spectrum (WVS) W, (¢, f) of a nonstationary random
process z(t) [13]-[15]. This will allow us to replace the cal-
culus of operators by the simpler calculus of functions. We

2A set S is convex if from R; € S and R € S it follows that
aRi+ (I1—a)Ry € Sfor0<a< 1.



require the processes s(t) and n(t) to be jointly underspread
[15], i.e., to feature only a limited amount of TF correla-
tion. For undersgread processes, the following apprommate
TF formulations® of e(H;Rs,Ry) in (1), Hw in (2), and
emin(Rs, Ry) in (3) can be derived [16]7

(R ) = 6T, T0) £ [ [ttt

Walt, £) + |Lu(t, )| Wa(t, )] dt ar,

Ly (05) 2 =D

Luy, (t, f) Wal(t, f) + Wa(t, f)

emin(R37Rn) ~ emln Ws‘,W)

2 Walt, f)
_//Wtf +W(tf)dtdf' ©)

In analogy to (4), we define the minimazr robust TF
Wiener filter Hg via its Weyl symbol as

Q

L, (t,f) = argmin max &(Ly; Ws, Wa)
WSE./\/'
where S and N are uncertainty classes for W (t, f) and
W, (t, f). Assuming S and A to be convex and proceeding
in analogy to Section 2 and the stationary case, we can show

that Hy equals the ordinary TF Wiener filter in (8),

L (60) = Ligt (61) = ——= D )
fi W )+ W f)

calculated for least favorable pseudo-WVS

(W', W,') = arg max &win(Wi, W)
W.eS
Wh €N
with Emin(Ws, Wi,) given by (9). This generalizes a similar
result in the stationary case [4]. From Lg (¢, f), Hp can
be obtained by an inverse Weyl transform [10, 11].
Next, we propose three different definitions of TF uncer-
tainty classes S, , N and we provide closed-form expressions
for the respective robust TF Wiener filters H R.

p-Point Model. Let {R;}i=1,2,....5 be a partition of the
TF plane, i.e., UfV:IRZ =R? and R;NR; = B for i # j.
Extending the stationary case definition in [3, 5], so-called
p-point uncertainty classes can be defined for WVS as [8]

S = {Wstf //Wstfdtdf_sl, 1_1,2,...,N}
{Wntf //W;Ltf)dtdf_m, 1_1,2,...,N},

i.e., as the sets that contain all pseudo-WVS having pre-
scribed energies s; > 0 and n; > 0 in prescribed TF regions

Ri. The sets g, N are easily shown to be convex.
A TF reformulation of the results in [8, 3] yields as least

favorable pseudo-WVS WSL (t, f) Efv_l W,i(t, f) and

3The tilde will indicate TF approximations or TF versions.

4Note that S, N are TF analogues of S, N. Here and in
what follows, W (t, f) and W, (t, f) are “pseudo-WVS” that are
not necessarily valid WVS but arbitrary TF functions that are
(essentially) nonnegative. (We note that the WVS of an under-
spread process is essentially nonnegative [14, 15].)

W (t, f) = 1, Wailt, f), where W (t, f) and Wi i(t, f)
are arbitrary nonnegative functions that are zero outside
Ri and satisfy nZWH(t,f) = SZWnl(t,f) The robust TF
Wiener filter in (10) is then obtained as

5
with w; = d

szthf ith w, = ——, (11)

where I, (¢, f) is the indicator function of R;. Note that
LﬁR(t,f) is piecewise constant, expressing constant TF

weighting in a given TF region R;. Furthermore, Hpr can
be shown to yield a constant TF MSE é(Lg ,I/I/s,m) =
SN S for all W € S, W, eEN.

i=1 s;4+n;

It has been shown [8] that Hp in (11) is a good approx-
imation to the analogous robust time-varying Wiener filter
Hpr defined according to (4). Thus, our TF formulation of
robust time-varying Wiener filters is valid, and (since Hg
is not based on an underspread assumption) Hpg is robust
also for processes that are not underspread.

An intuitive and computationally efficient approximate
TF implementation of the robust TF filter Hg in (11) ex-
ists if the partition {R;} corresponds to a uniform rectan-
gular tiling of the TF plane, i.e., the TF regions are chosen
as Rey = [KT — T/2,kT + T/2) x [IF — F/2,lF + F/2)
with TF = M € N (note that now we use a dou-
ble index). Let {z(™ (t)},n=1.2... ar denote an orthonor-
mal basis for the signal subspace Xy corresponding to
the TF rectangle Ro,0 (this correspondence is defined in
[17]). Since Ry, is obtained from Ro, through a TF
shift by (kT,lF), an orthonormal basis for the signal sub-

space X}, corresponding to Ry, is given by {z(m)( t) =

Ly, (4 f) =

™ (t — kT) ™Y 215, [17]. We now propose to
approximate Hg in (11) (to be more precise, Hg) by the
filter Hr = Z;o:ﬂx) Z?iioo Wi, Pr,; with wg; = %,

where Py ; is the orthogonal projection operator on X} ;.
The resulting signal estimate can then be expressed as

(oo}
(Hpr)( Z Z S wie GV (kD) P ()
m=1k=—ool=—0c0

with the Gabor coefficients [18] Ggm)(k, ) = (r a:,(g";)) =
I r@) ™t —kT) e 2" Ftqt, m = 1,2,..., M. Thus,
Hp is a multi-window [18] Gabor filter consisting of Gabor
analysis, multiplicative modification, and Gabor synthesis
in each of the M branches.

If the partition {R;} is a wavelet-type tiling of the TF
plane, a (conceptually analogous) multi-wavelet implemen-
tation of the robust Wiener filter can be developed.

Varlatlonal Neighborhood Model. Let W (t, f) and
W, (t f) be nominal pseudo-WVS Wlth mean energies E?
S [ W *(t, f)dtdf and EO = [, S W U(t, f)dtdf. Extend-

ing the stationary case [4, 5], we deﬁne variational neigh-
borhood uncertainty classes for WVS as

§={Wt.f): [W-W'|, <eE}
N = {Wt.0): W=, < B2},

with fixed € > 0, combined with the requirement of fixed
mean energies ftIf Wa(t (t,f)dtdf = E? and ftff (t,f)dtdf
= EY. The sets S and N can be shown to be convex.



In what foﬁ)azvs, we_éieﬁne the nominal TF SNR
SNRO(t, f) & W, (t, f)/W, (t, f) and use the abbreviation

WOt f) 2 ESW. (¢, f)+ E°W, (t, f). Extending [4], it can
be shown that the least favorable pseudo-WVS are given by

L TWO(t, f) for (¢ f) € Ry

., E04c, EQ

W) = W) for (£, f) € Ro
7EE+C§2E2 W (t,f) for (t,f) € Ra,
—E-o_,_ilpjo WO (¢, f) for (¢, f) € Ra

—L s "

W, (t, ) = S WL (¢, f) for (t, f) € Ro

L__W°(t,f) for (t,f) € Ra.

E0+czEY
Here R1, Ro, and R» are the TF regions where SNR° t f)
is <ci1, €[c1,c2], and > ca2, respectively, and the constants
c1,c2 are chosen such that ||WSL— WSOHI = eE? and ||WnL—
WnO”l = e¢EY (which is always possible if SN AN = 0). The
corresponding TF SNR, SNRE (¢, f) £ WSL (t, f)/WnL t,f),
equals ¢, SNRY(¢, f), and c2 on R1, Ro, and R, respec-
tively, i.e., SNRZ (¢, f) is SNR(¢, f) clipped from below and

above. The Weyl symbol of the robust TF Wiener filter in
(10) is then obtained as

Lmin for (t, f) € R
Ly = Lag (1) for (LN)eRy  (12)
Lonax for (¢, f) € R2,

with Lo (t, ) = W2 (&, £)/ [ (¢, £)+ T3, (¢, £)] and Luin
= 1757y Lmex = 174 Thus, LﬁR(t,f) is a clipped ver-
sion of the Weyl symbol of the nominal TF Wiener fil-
ter, Lﬁ%} (t, f). Indeed, the potential performance loss of
H), is due to Lﬁ%} (t, f) being too close to 0 (to 1) in

TF regions where SNRO(t, f) is very small (large), resulting
in a filter attenuation (gain) that is too strong for non-
nominal WVS. Hence, a clipping of Lgo (¢, f) (which im-

plies the clipping SNR(¢, f) — SNR” (t,v?) since Lﬁ%} t, f)
= SNR(t, f)/[SNR®(¢, f) + 1]) results in robustness.

e-Contamination Model. Again extending the station-
ary case [2], we define e-contamination uncertainty classes

§={Wt.f): W(t. /) = 1 =W'(t, f) + W. (. }
N = {Walt,1): Walt, ) = Q=W (¢, /) + W,(1, 1)},

with fixed € > 0, where Ws,(t,f) >0, Wé(t,f) >0 are arbi-
trary up to the usual constraint of fixed mean energy, i.e.,
[ [, Wit ) dtdf = ES and [, [, W, (t, f) dtdf = B} The
sets S and A can be shown to be convex.

The least favorable pseudo-WVS are here obtained as

L {cl(l —E)Wno(t, f) for € R,

€ RoUR2,

)

t f
t, f

AA
~— —

WD = Cam gt ) for

— L1—eW. (¢ for
W, ) = { = O (B )
(l_E)VV;L (taf) for
with c1, c2 chosen such that VVsL(t,f), VVnL(t, f) meet the
mean energy constraints. The corresponding TF SNR is
again a clipped version of SNR (¢, f), i.e., SNR” (¢, f) equals
c1, SNRO(t, f), and ¢z on R1, Ro, and Ra, respectively.
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Figure 1. TF representations of signal and noise statis-
tics as well as nominal and robust TF Wiener filters for e-

contirgmation mod_e]ld (e=0.1): (a) Wso(t,f), (b) WSL(iE7 ),
(¢c) Wo (&, f), (d) Wo (8, f), (e) Lo (8, ), (F) Ly, (¢ f)-

Furthermore, the Weyl symbol of the robust TF Wiener
filter in (10) equals the clipped version of Lﬁ%‘/ (t, f) given

in (12). Note, however, that R1, Ro, R2 and Lmin, Lmax
are different due to the different uncertainty model.

4 SIMULATION RESULTS

Figs. 1(a) and 1(c) show nominal WVS of signal and noise.
The least favorable WVS obtained for an e-contamination
model with € = 0.1 are depicted in Figs. 1(b) and 1(d). Fig.
1(f) shows that the Weyl symbol of the minimax robust TF

Wiener filter ﬁR is indeed a clipped version (with Lmin =
0.21, Lmax = 0.77) of the Weyl symbol of the nominal TF

Wiener filter HY, depicted in Fig. 1(e).

Table 1 compares the MSEs achieved by ﬁ(v’v and Hy, at
nominal operating conditions (WSO,WLO) and at least favor-
able operating conditions (WSL,WHL) for several values of e.
It is seen that the MﬁE variation is much smaller for ﬁR
than for® HY, i.e., Hg is indeed robust with respect to a
variation of operating conditions. We note that simulation
results for the p-point model can be found in [8].

5 CONCLUSION

We have introduced minimax robust time-varying Wiener
filters that guarantee a certain performance within given

5Here, it should be noted that while for Hp the worst-case

operating conditions are given by (WSL,W”L), the performance
= — L ~——1I
of HY, can be worse than at (W, , W, ).



[ 0.01] 0.05] 0.10] 0.20] 0.40 ]

&(Lgg ;W. . W) || 9.65| 9.65| 9.65| 9.65| 9.65
é(Lﬁ%;_f,WnL) 10.35 | 12.60 | 15.66 | 20.99 | 30.64
E(Lg,; Wy , W) || 9.69| 9.99 | 10.74 | 12.90 | 19.53
é(Lg,; Wy ,Wo) | 10.33 | 12.26 | 14.48 | 17.40 | 19.55

Table 1. MSE obtained with ﬁ%/ and Hy at nominal oper-
ating conditions (WSO,W,LO) and at least favorable operating

conditions (WSL,W,LL) for several values of €.

uncertainty classes of nonstationary processes. A time-
frequency reformulation of the minimax theory allowed us
to replace the calculus of operators by the simpler calculus
of functions. Intuitively appealing and simple closed-form
expressions of robust time-frequency Wiener filters have
been obtained for three important uncertainty models.

APPENDIX: PROOF OF THEOREM 2.1

We show that (6) is necessary and sufficient for RY, R to
satisfy the left-hand inequality in (7) with Hy = H¥,,

e(Hiy; R, Rn) < e(Hijp;RI,RY). (13)

Our proof (see [19] for more details) is essentially an adap-
tation and combination of arguments in [4, 7].

To show that (6) is necessary for (13), we com-
bine (13) with emin(Rs,Rn) < e(HL;Rs,R,) and
e(HY; RE RE) = enin(RE,RE) to obtain emin(Rs, Ry) <
emin(RE,RE) for all Rs € S, Ry, € NV, which is (6).

We now prove that (6) is sufficient for (13). Let Ry € S
and R, € N. One can show [19] that emin(Rs,R.) is a
concave function of R; and Ry, so that

emin(R, RY) > aemin(Rs, Rn) + (1 —a)emin(RE, RY)
(14)
for 0<a <1, where R =aR,+(1— a)RL, R =aR,, +(1—
a)REL. Due to the convexity of S and N, we have R € S
and R € N for 0 < o < 1. Subtracting emin(RZ>, R%)
from both sides of (14) and dividing by « yields

0> éf(a) > 6min(RS7Rn) _6min(Rf7R£)’

where f(a) £ enin(RY, RY) — emin(RE, RE) and the upper
bound follows from (6). Hence, < f(a) is bounded, so that
its limit for & — 07 exists and thus

lim éf(a) .

a—0t

0> (15)
Let R, = R, + R,,, RY = R¢ + R%, and Rf = RL
R;. Using emin(Rs,Rn) = tr{R.} — tr{R.(R,) 'Rs
(cf. (3)) and tr{RS} = tr{Rl}, we obtain f(a)
tr{R% (RTL)_IRSL} — tr{R¢ (R?)_IR?}. Separating terms
and using RKHS techniques similar to [7] yields [19]

+

——

lim *f(a) = tr{Hiy R, Hy, } — tr{H{p Ry HGT )

a—0t o
+2tr{Hjp Ry } — 2Re{tr{H{z R, }} .
Adding tr{R.} and subtracting tr{R% } (which is allowed
since tr{RY} =tr{R.}) and using e(H;Rs, R,) = tr{R.}
—2Re{tr{HR;}} + tr{HR,H"} (cf. (1)), we obtain

lim = f(a) = e(Hy; Ry, Ra) — e(Hl; RE, RE).

a—0t &

With (15), this finally yields (13).

(1]
2]
(3]

[10]

(1]

[12]

(13]

[14]
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