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ABSTRACT

We introduce minimax robust time-varying Wiener �lters
and show a result that facilitates their calculation. Refor-
mulation in the time-frequency domain yields simple closed-
form expressions of minimax robust time-frequency Wiener
�lters based on three di�erent uncertainty models. For one
of these �lters, an eÆcient implementation using the multi-
window Gabor transform is proposed.

1 INTRODUCTION

We consider the estimation of a nonstationary random sig-
nal s(t) from an observation r(t) = s(t) + n(t), where n(t)
is nonstationary noise uncorrelated with s(t), by means of a
linear, time-varying system H. The resulting mean square
error (MSE) e(H;Rs;Rn) , EfkHr � sk22g is given by1

e(H;Rs;Rn) = tr
�
(I�H)Rs(I�H)++ HRnH

+
	
: (1)

The MSE is minimized by the time-varying Wiener �lter [1]

HW , argmin
H

e(H;Rs;Rn) = Rs(Rs +Rn)
�1; (2)

and the minimal MSE can be expressed as

emin(Rs;Rn) , e(HW ;Rs;Rn) = tr
�
Rs(Rs+Rn)

�1
Rn

	
:

(3)
The Wiener �lter's sensitivity to deviations of the actual

correlations from the nominal correlations motivates the use
of minimax robust Wiener �lters. This paper extends the
robust Wiener �lters proposed in [2]{[5] for stationary pro-
cesses to the nonstationary case (see also [6, 7]). Com-
plementing the introduction of robust time-varying Wiener
�lters in [8], Section 2 provides a fundamental result that
facilitates the calculation of such �lters. A further simpli�-
cation is achieved in Section 3 by a time-frequency formula-
tion. Explicit expressions of \minimax robust time-frequen-
cy Wiener �lters" are derived for three uncertainty models.
Finally, simulation results are presented in Section 4.

2 ROBUST TIME-VARYING WIENER FILTER

By de�nition, the minimax robust time-varying Wiener �l-
ter HR optimizes the worst-case performance within uncer-
tainty classes S, N for the correlations Rs, Rn:

HR , argmin
H

max
Rs2S
Rn2N

e(H;Rs;Rn) : (4)

�Funding by FWF grant P11904-TEC.
1Here,Rs andRn denote the correlation operators of s(t) and

n(t), respectively. The correlation operator Rx of a (generally
nonstationary) random process x(t) is the positive (semi-)de�nite
linear operator whose kernel equals rx(t; t0) = E fx(t) x�(t0)g. In
a discrete-time setting, Rx would be a matrix.

The uncertainty classes S, N model our uncertainty about
the actual correlations. All Rs 2 S are assumed to have the
same trace (mean energy of s(t)) �Es , Efksk22g = trfRsg,
and similarly for Rn 2 N .
The calculation of HR simpli�es if

min
H

max
Rs2S
Rn2N

e(H;Rs;Rn) = max
Rs2S
Rn2N

min
H

e(H;Rs;Rn) ; (5)

since minH e(H;Rs;Rn) is achieved by the ordinary Wiener
�lterHW = Rs(Rs+Rn)

�1 in (2). Hence, when (5) is valid,
HR is equal to the ordinary Wiener �lter

HR = H
L
W , R

L
s

�
R
L
s +RL

n

��1
obtained for those correlations RL

s , R
L
n that are least fa-

vorable in the sense that they maximize emin(Rs;Rn) =
minH e(H;Rs;Rn) among all Rs 2 S and Rn 2 N , i.e.,

(RL
s ;R

L
n) = arg max

Rs2S
Rn2N

emin(Rs;Rn) ; (6)

with emin(Rs;Rn) given by (3).
It can be shown [9] that the pivotal relation (5) holds if

and only if there exists a saddle point of e(H;Rs;Rn), i.e.,
a �lter HL and correlations RL

s , R
L
n satisfying

e(HL;Rs;Rn) � e(HL;R
L
s ;R

L
n ) � e(H;RL

s ;R
L
n) (7)

for all H and Rs 2 S, Rn 2 N . The right-hand inequality
in (7) is trivially satis�ed by choosing HL = HL

W since HL
W

minimizes e(H;RL
s ;R

L
n). A necessary and suÆent condi-

tion for the left-hand inequality in (7) is provided by the
following theorem whose proof is outlined in the Appendix.

Theorem 2.1. For convex2 uncertainty classes S, N ,
there is e(HL

W ;Rs;Rn) � e(HL
W ;RL

s ;R
L
n) with HL

W =

RL
s

�
RL
s + RL

n

��1
if and only if RL

s and RL
n are least fa-

vorable correlations as de�ned in (6).

Hence, we have �nally simpli�ed the calculation of HR

to the convex optimization problem (6).

3 ROBUST TIME-FREQUENCY
WIENER FILTER

A further simpli�cation will be achieved by a time-frequen-
cy (TF) reformulation in terms of the Weyl symbol LH(t; f)
of a linear time-varying systemH [10]{[12] and the Wigner-

Ville spectrum (WVS) Wx(t; f) of a nonstationary random
process x(t) [13]{[15]. This will allow us to replace the cal-
culus of operators by the simpler calculus of functions. We

2A set S is convex if from R1 2 S and R2 2 S it follows that
�R1 + (1��)R2 2 S for 0 � � � 1.



require the processes s(t) and n(t) to be jointly underspread
[15], i.e., to feature only a limited amount of TF correla-
tion. For underspread processes, the following approximate
TF formulations3 of e(H;Rs;Rn) in (1), HW in (2), and
emin(Rs;Rn) in (3) can be derived [16],

e(H;Rs;Rn) � ~e(LH;Ws;Wn) ,

Z
t

Z
f

h��1�LH(t; f)��2
�Ws(t; f) +

��LH(t; f)��2Wn(t; f)
i
dt df ;

LHW (t; f) � L
eHW

(t; f) ,
Ws(t; f)

Ws(t; f) +Wn(t; f)
; (8)

emin(Rs;Rn) � ~emin(Ws;Wn)

,

Z
t

Z
f

Ws(t; f)Wn(t; f)

Ws(t; f) +Wn(t; f)
dt df : (9)

In analogy to (4), we de�ne the minimax robust TF
Wiener �lter eHR via its Weyl symbol as

L
eHR

(t; f) , argmin
LH

max
Ws2 eS

Wn2 eN

~e(LH;Ws;Wn) ;

where eS and eN are uncertainty classes4 for Ws(t; f) and
Wn(t; f). Assuming eS and eN to be convex and proceeding
in analogy to Section 2 and the stationary case, we can show

that eHR equals the ordinary TF Wiener �lter in (8),

L
eHR

(t; f) = L
eHL
W
(t; f) =

W
L

s (t; f)

W
L

s (t; f) +W
L

n (t; f)
; (10)

calculated for least favorable pseudo-WVS�
W

L

s ;W
L

n

�
= arg max

Ws2 eS

Wn2 eN

~emin(Ws;Wn)

with ~emin(Ws;Wn) given by (9). This generalizes a similar

result in the stationary case [4]. From L
eHR

(t; f), eHR can

be obtained by an inverse Weyl transform [10, 11].
Next, we propose three di�erent de�nitions of TF uncer-

tainty classes eS, eN and we provide closed-form expressions

for the respective robust TF Wiener �lters eHR.

p-Point Model. Let fRigi=1;2;:::;N be a partition of the

TF plane, i.e.,
SN
i=1Ri = R

2 and Ri \Rj = ; for i 6= j.
Extending the stationary case de�nition in [3, 5], so-called
p-point uncertainty classes can be de�ned for WVS as [8]

eS =
n
Ws(t; f) :

ZZ
Ri

Ws(t; f) dtdf = si ; i = 1; 2; : : : ; N
o

eN =
n
Wn(t; f) :

ZZ
Ri

Wn(t; f) dtdf = ni ; i = 1; 2; : : : ; N
o
;

i.e., as the sets that contain all pseudo-WVS having pre-
scribed energies si � 0 and ni � 0 in prescribed TF regions

Ri. The sets eS, eN are easily shown to be convex.
A TF reformulation of the results in [8, 3] yields as least

favorable pseudo-WVS W
L

s (t; f) =
PN

i=1Ws;i(t; f) and

3The tilde will indicate TF approximations or TF versions.
4Note that eS, eN are TF analogues of S, N . Here and in

what follows, Ws(t; f) and Wn(t; f) are \pseudo-WVS" that are
not necessarily valid WVS but arbitrary TF functions that are
(essentially) nonnegative. (We note that the WVS of an under-
spread process is essentially nonnegative [14, 15].)

W
L

n (t; f) =
PN

i=1Wn;i(t; f), where Ws;i(t; f) and Wn;i(t; f)
are arbitrary nonnegative functions that are zero outside
Ri and satisfy niWs;i(t; f) = siWn;i(t; f). The robust TF
Wiener �lter in (10) is then obtained as

L
eHR

(t; f) =
NX
i=1

wi IRi
(t; f) with wi =

si
si + ni

; (11)

where IRi
(t; f) is the indicator function of Ri. Note that

L
eHR

(t; f) is piecewise constant, expressing constant TF

weighting in a given TF region Ri. Furthermore, eHR can
be shown to yield a constant TF MSE ~e(L

eHR
;Ws;Wn) =PN

i=1
sini
si+ni

for all Ws 2 eS, Wn 2 eN .
It has been shown [8] that eHR in (11) is a good approx-

imation to the analogous robust time-varying Wiener �lter
HR de�ned according to (4). Thus, our TF formulation of
robust time-varying Wiener �lters is valid, and (since HR

is not based on an underspread assumption) eHR is robust
also for processes that are not underspread.
An intuitive and computationally eÆcient approximate

TF implementation of the robust TF �lter eHR in (11) ex-
ists if the partition fRig corresponds to a uniform rectan-
gular tiling of the TF plane, i.e., the TF regions are chosen
as Rk;l = [kT � T=2; kT + T=2) � [lF � F=2; lF + F=2)
with TF = M 2 N (note that now we use a dou-

ble index). Let fx(m)(t)gm=1;2;::: ;M denote an orthonor-
mal basis for the signal subspace X0;0 corresponding to
the TF rectangle R0;0 (this correspondence is de�ned in
[17]). Since Rk;l is obtained from R0;0 through a TF
shift by (kT; lF ), an orthonormal basis for the signal sub-

space Xk;l corresponding to Rk;l is given by fx(m)
k;l (t) =

x(m)(t � kT ) ej2�lFtgm=1;2;::: ;M [17]. We now propose to

approximate eHR in (11) (to be more precise, HR) by the

�lter bHR ,
P1

k=�1

P1

l=�1wk;lPk;l with wk;l =
sk;l

sk;l+nk;l
,

where Pk;l is the orthogonal projection operator on Xk;l.
The resulting signal estimate can then be expressed as

( bHR r)(t) =

MX
m=1

1X
k=�1

1X
l=�1

wk;lG
(m)
r (k; l)x

(m)
k;l (t) ;

with the Gabor coeÆcients [18] G
(m)
r (k; l) = hr; x(m)

k;l i =R1
�1

r(t)x(m)�(t�kT ) e�j2�lFtdt, m = 1; 2; : : : ;M . Thus,bHR is a multi-window [18] Gabor �lter consisting of Gabor
analysis, multiplicative modi�cation, and Gabor synthesis
in each of the M branches.
If the partition fRig is a wavelet-type tiling of the TF

plane, a (conceptually analogous) multi-wavelet implemen-
tation of the robust Wiener �lter can be developed.

Variational Neighborhood Model. Let W
0
s (t; f) and

W
0
n (t; f) be nominal pseudo-WVS with mean energies �E0

s =R
t

R
f
W

0
s (t; f) dt df and �E0

n =
R
t

R
f
W

0
n (t; f) dt df . Extend-

ing the stationary case [4, 5], we de�ne variational neigh-
borhood uncertainty classes for WVS as

eS =
n
Ws(t; f) :

Ws�W
0
s


1
� � �E0

s

o
eN =

n
Wn(t; f) :

Wn�W
0
n


1
� � �E0

n

o
;

with �xed � > 0, combined with the requirement of �xed
mean energies

R
t

R
f
Ws(t;f) dtdf= �E0

s and
R
t

R
f
Wn(t;f) dtdf

= �E0
n. The sets eS and eN can be shown to be convex.



In what follows, we de�ne the nominal TF SNR
SNR0(t; f) , W

0
s (t; f)=W

0
n (t; f) and use the abbreviation

W
0
(t; f) , �E0

nW
0
s (t; f)+ �E0

sW
0
n (t; f). Extending [4], it can

be shown that the least favorable pseudo-WVS are given by

W
L

s (t; f) =

8>><>>:
c1

�E0s+c1
�E0n
W

0
(t; f) for (t; f) 2 R1

W
0
s (t; f) for (t; f) 2 R0
c2

�E0s+c2
�E0n
W

0
(t; f) for (t; f) 2 R2 ;

W
L

n (t; f) =

8>><>>:
1

�E0s+c1
�E0n
W

0
(t; f) for (t; f) 2 R1

W
0
n (t; f) for (t; f) 2 R0

1
�E0s+c2

�E0n
W

0
(t; f) for (t; f) 2 R2 :

Here R1, R0, and R2 are the TF regions where SNR0(t; f)
is <c1, 2 [c1; c2], and >c2, respectively, and the constants

c1; c2 are chosen such that
WL

s �W
0
s


1
= � �E0

s and
WL

n�

W
0
n


1
= � �E0

n (which is always possible if S \ N = ;). The

corresponding TF SNR, SNRL(t; f) , W
L

s (t; f)=W
L

n (t; f),
equals c1, SNR

0(t; f), and c2 on R1, R0, and R2, respec-
tively, i.e., SNRL(t; f) is SNR0(t; f) clipped from below and
above. The Weyl symbol of the robust TF Wiener �lter in
(10) is then obtained as

L
eHR

(t; f) =

8<:
Lmin for (t; f) 2 R1

L
eH0
W
(t; f) for (t; f) 2 R0

Lmax for (t; f) 2 R2 ;

(12)

with L
eH0
W
(t; f) =W

0
s (t; f)=

�
W

0
s (t; f)+W

0
n (t; f)

�
and Lmin

= c1
1+c1

, Lmax = c2
1+c2

. Thus, L
eHR

(t; f) is a clipped ver-

sion of the Weyl symbol of the nominal TF Wiener �l-
ter, L

eH0
W
(t; f). Indeed, the potential performance loss ofeH0

W is due to L
eH0
W
(t; f) being too close to 0 (to 1) in

TF regions where SNR0(t; f) is very small (large), resulting
in a �lter attenuation (gain) that is too strong for non-
nominal WVS. Hence, a clipping of L

eH0
W
(t; f) (which im-

plies the clipping SNR0(t; f)! SNRL(t; f) since L
eH0
W
(t; f)

= SNR0(t; f)=[SNR0(t; f) + 1]) results in robustness.

�-Contamination Model. Again extending the station-
ary case [2], we de�ne �-contamination uncertainty classes

eS =
n
Ws(t; f) : Ws(t; f) = (1� �)W

0
s (t; f) + �W

0

s (t; f)
o

eN =
n
Wn(t; f) : Wn(t; f) = (1� �)W

0
n (t; f) + �W

0

n(t; f)
o
;

with �xed � > 0, where W
0

s (t; f)� 0, W
0

n(t; f)� 0 are arbi-
trary up to the usual constraint of �xed mean energy, i.e.,R
t

R
f
W
0

s (t; f) dt df = �E0
s and

R
t

R
f
W
0

n(t; f) dt df = �E0
n. The

sets eS and eN can be shown to be convex.
The least favorable pseudo-WVS are here obtained as

W
L

s (t; f) =

(
c1(1� �)W

0
n (t; f) for (t; f) 2 R1 ;

(1� �)W
0
s (t; f) for (t; f) 2 R0[R2 ;

W
L

n (t; f) =

(
1
c2
(1� �)W

0
s (t; f) for (t; f) 2 R2 ;

(1� �)W
0
n (t; f) for (t; f) 2 R0[R1 ;

with c1, c2 chosen such that W
L

s (t; f), W
L

n (t; f) meet the
mean energy constraints. The corresponding TF SNR is
again a clipped version of SNR0(t; f), i.e., SNRL(t; f) equals
c1, SNR

0(t; f), and c2 on R1, R0, and R2, respectively.
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Figure 1. TF representations of signal and noise statis-
tics as well as nominal and robust TF Wiener �lters for �-

contamination model (� = 0:1): (a) W
0
s (t; f), (b) W

L

s (t; f),

(c) W
0
n (t; f), (d) W

L

n (t; f), (e) L
eH0
W
(t; f), (f) L

eHR
(t; f).

Furthermore, the Weyl symbol of the robust TF Wiener
�lter in (10) equals the clipped version of L

eH0
W
(t; f) given

in (12). Note, however, that R1, R0, R2 and Lmin, Lmax

are di�erent due to the di�erent uncertainty model.

4 SIMULATION RESULTS

Figs. 1(a) and 1(c) show nominal WVS of signal and noise.
The least favorable WVS obtained for an �-contamination
model with � = 0:1 are depicted in Figs. 1(b) and 1(d). Fig.
1(f) shows that the Weyl symbol of the minimax robust TF

Wiener �lter eHR is indeed a clipped version (with Lmin =
0:21, Lmax = 0:77) of the Weyl symbol of the nominal TF

Wiener �lter eH0
W depicted in Fig. 1(e).

Table 1 compares the MSEs achieved by eH0
W and eHR at

nominal operating conditions (W
0
s ;W

0
n ) and at least favor-

able operating conditions (W
L

s ;W
L

n ) for several values of �.

It is seen that the MSE variation is much smaller for eHR

than for5 eH0
W , i.e., eHR is indeed robust with respect to a

variation of operating conditions. We note that simulation
results for the p-point model can be found in [8].

5 CONCLUSION

We have introduced minimax robust time-varying Wiener
�lters that guarantee a certain performance within given

5Here, it should be noted that while for eHR the worst-case

operating conditions are given by (W
L
s ;W

L
n ), the performance

of eH0
W can be worse than at (W

L
s ;W

L
n ).



� 0.01 0.05 0.10 0.20 0.40

~e(L
eH
0
W
;W

0
s ;W

0
n ) 9.65 9.65 9.65 9.65 9.65

~e(L
eH0
W
;W

L

s ;W
L

n ) 10.35 12.60 15.66 20.99 30.64

~e(L
eHR

;W
0
s ;W

0
n ) 9.69 9.99 10.74 12.90 19.53

~e(L
eHR

;W
L

s ;W
L

n ) 10.33 12.26 14.48 17.40 19.55

Table 1. MSE obtained with eH0
W and eHR at nominal oper-

ating conditions (W
0
s ;W

0
n ) and at least favorable operating

conditions (W
L

s ;W
L

n ) for several values of �.

uncertainty classes of nonstationary processes. A time-
frequency reformulation of the minimax theory allowed us
to replace the calculus of operators by the simpler calculus
of functions. Intuitively appealing and simple closed-form
expressions of robust time-frequency Wiener �lters have
been obtained for three important uncertainty models.

APPENDIX: PROOF OF THEOREM 2.1

We show that (6) is necessary and suÆcient for RL
s , R

L
n to

satisfy the left-hand inequality in (7) with HL = HL
W ,

e(HL
W ;Rs;Rn) � e(HL

W ;RL
s ;R

L
n) : (13)

Our proof (see [19] for more details) is essentially an adap-
tation and combination of arguments in [4, 7].
To show that (6) is necessary for (13), we com-

bine (13) with emin(Rs;Rn) � e(HL
W ;Rs;Rn) and

e(HL
W ;RL

s ;R
L
n) = emin(R

L
s ;R

L
n) to obtain emin(Rs;Rn) �

emin(R
L
s ;R

L
n) for all Rs 2 S, Rn 2 N , which is (6).

We now prove that (6) is suÆcient for (13). Let Rs 2 S
and Rn 2 N . One can show [19] that emin(Rs;Rn) is a
concave function of Rs and Rn, so that

emin(R
�
s ;R

�
n) � �emin(Rs;Rn) + (1��)emin(R

L
s ;R

L
n )
(14)

for 0���1, where R�
s =�Rs+(1� �)RL

s , R
�
n=�Rn+(1�

�)RL
n . Due to the convexity of S and N , we have R�

s 2 S
and R�

n 2 N for 0 � � � 1. Subtracting emin(R
L
s ;R

L
n)

from both sides of (14) and dividing by � yields

0 �
1

�
f(�) � emin(Rs;Rn)� emin(R

L
s ;R

L
n) ;

where f(�) , emin(R
�
s ;R

�
n)� emin(R

L
s ;R

L
n) and the upper

bound follows from (6). Hence, 1
�
f(�) is bounded, so that

its limit for �! 0+ exists and thus

0 � lim
�!0+

1

�
f(�) : (15)

Let Rr = Rs + Rn, R
�
r = R�

s + R�
n , and RL

r = RL
s +

RL
n . Using emin(Rs;Rn) = trfRsg � tr

�
Rs(Rr)

�1Rs

	
(cf. (3)) and trfR�

s g = tr
�
RL
s

	
, we obtain f(�) =

trfRL
s

�
RL
r

��1
RL
s g � trfR�

s

�
R�
r

��1
R�
s g. Separating terms

and using RKHS techniques similar to [7] yields [19]

lim
�!0+

1

�
f(�) = tr

�
H
L
WRrH

L+
W

	
� tr

�
H
L
WR

L
rH

L+
W

	
+ 2 tr

�
H
L
WR

L
s

	
� 2Re

�
tr
�
H
L
WRs

		
:

Adding trfRsg and subtracting tr
�
RL
s

	
(which is allowed

since tr
�
RL
s

	
= trfRsg) and using e(H;Rs;Rn) = trfRsg

�2Re
�
trfHRsg

	
+ tr

�
HRrH

+
	
(cf. (1)), we obtain

lim
�!0+

1

�
f(�) = e(HL

W ;Rs;Rn)� e(HL
W ;RL

s ;R
L
n) :

With (15), this �nally yields (13).
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