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ABSTRACT

In this study the problem of modeling a family of curves
is addressed. The need of such modeling appears fre-
quently in many aspects of image processing where
many linear structures keep spatial relationships during
their evolution. We come up with a modeling tool well
suited to the spatial modeling of a family of curves, and
which can be very useful for motion tracking and curve
evolution as well. The family of curves is represented as
the line paths (orbits) of a “ spline vector field ”, i.e. a
vector field interpolating data using a framework similar
to the theory of spline curves. The model is exempli-
fied with oceanic satellite data. Its usefullness for curve
evolution modeling is also presented.

1. INTRODUCTION

Curve modeling and temporal evolution play a central
role in many theoretical and applied problems [9, 8, 7,
3]. Although many researchers focused on the problem
of curve evolution, few studies have been devoted to the
problem of dealing simultaneously with structures inter-
acting each other. The problem addressed in this paper
is the following: given a sequence displaying different
structures evolving in time, find a mathematical struc-
ture that permits:

� the modeling of each linear structure as a mathe-
matical curve,

� a modeling of the natural relationships between
these curves1,

� the study of temporal evolution of these curves.

To take a specific example, let us consider the image dis-
played in picture 1. It is a NOAA-AVHRR Sea Surface
Temperature (SST) of the Mediterranean sea. On this
image, one sees the boundaries of different structures:

1For instance, in the domain of facial animation, a set of curves
(the wrinkles) can be modelled as the parametrized isolines of a sur-
face [10], and the mutual relationships between the curves are kept in
the geometry of the surface.

a vortex and temperature fronts. These structures inter-
act with each other, and maintain spatial relationships
during their temporal evolution. Our goal is to find a sin-
gle mathematical model that permit the spatial modeling
of these different kinds of structures, and their temporal
evolution.

Figure 1:NOAA-AVHRR Sea Surface Temperature over the Alboran Sea.

Image acquired on 24 august 1996. False colors.

In various areas of image processing and computer
vision, specific modeling tools have been designed to
properly handle similar phenomena. For instance in the
area of face recognition and analysis, physical models
have been devised [2] that can take into account salient
features in a face. When the linear structures are not
too spatially extended, and the deformations not too im-
portant, as it is the case in face recognition, it seems
satisfactory to use standard templates and surface defor-
mation methods. But in the general case, such methods
cannot be used because the linear structures undergo too
much deformation, making it untractable the use of well-
known surface modeling techniques. In this study, we
set up a modeling tool that can serve as a basis for mod-
eling general disconnect sets of linear aggregations of
pixels. It consists in building a vector field whose inte-
gral paths (also known as orbits of the field) are precisely
the linear structures to be modeled. We argue that this



tool is well suited for the analysis of motion. This paper
is organized as follows. In section 2 we introduce the
spline vector field modeling tool. The model is applied
on satellite data in section 3. Then we end the paper with
conclusion and perspectives.

2. A SPLINE VECTOR FIELD MODELING

Spline vector fields have been used in a similar frame-
work for image reconstruction in [4] and in numerical
analysis in [1]. In this study, we want to produce a vec-
tor field whose orbits are (among others) the linear struc-
tures (with a well chosen initial point) discussed in sec-
tion 1. The vector field will be a “ spline vector field ”
approximating a given vector data set. Moreover, since
we are interested in a dense vector field, its knowledge
gives the possibility of computing the path of any parti-
cle in the image. A linear structure is modeled from the
vector field by giving an initial position, and computing
the parametrized curve passing through that initial po-
sition using simple numerical schemes. Hence the main
problem is how do we compute the vector field, and from
what kind of data? These topics are discussed in the fol-
lowing two subsections.

2.1. The spline vector field

GivenN vectors
�!
Vi , we seek aC1 vector field

V : IR2 �! IR2

such thatV approximates theN vectors
�!
Vi . To achieve

this, one could simply use standard spline interpolation
techniques to compute the uncoupledx andy compo-
nents of the field. But such a method looses control on
the rotational and divergence of the resulting field. In
fact, one would want to control the number of “ curls
” between the given vector data. L. Amodei and M.N.
Benbourhim [1] minimize the following energy :

J�(V ) = �

Z
IR2

kr div V k2dxdy +

(1� �)

Z
IR2

kr rot V k2dxdy

Using this energy functionnal, one tries to minimize the
variations of the rotational and the divergence, and con-
trol the relative importance of each term w.r.t. the other
term. The parameter� is a tuning coefficient that can be
adjusted to control the relation between the rotationnal
and the divergent part of the field. Given theN vectors
�!
Vi , located at pointsXi (V (Xi) =

�!
Vi ), an explicit so-

lution is found forV . The main result is written in the
following theorem [1].
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with ai andbi 2 IR and

K(X) = �
1

27�
kXk4 log kXk :

The solution
V� = (u�; v�)

of the minimization problem admits a unique expression
depending ofX = (x; y) :

u�(X) = g(X) + p(X)
v�(X) = g(X) + q(X) ;

wherep(X) and q(X) are degree 1 polynomials. The
coefficients are obtained by solving a linear system.

In the next subsection, we describe the preprocessing
step.

2.2. Preprocessing

The preprocessing step consists in computing the initial
vector data (denoted

�!
Vi in the previous subsection). We

first use contour extraction (local extrema of the gradient
norm and hysteresis thresholding) [5] to generate a con-
tour image. We show, in figure 2, the result of contour
extraction on image 1. It is a set of linear structures cor-
responding to local extrema of the gradient norm. From
this data we want to generate an initial set of vectors
on which the vector spline approximation is computed,
in such a way that the linear structures will become the
orbits of this spline vector field.

Let us denote byS the set of pixels belonging to the
contours. To compute the direction of a tangent vector at
a pixelp 2 S, we take an averaged sum of the directions
of the segments linking pairs of connected pixels in the
neighborhood ofp. Hence the tangent direction at pixel
p using the setM of N neighbours is given by�Np :

�Np =
1

2N

X
j2M

atan(
yj+1 � yj

xj+1 � xj
) :

In this equationj+1 refers to the pixel next toj. In that
way, each vector

�!
Vi based atp is given the orientation of

the computed angle�Np .



Figure 2:Result of contour extraction.

But there is a problem at this point: these sets of
pixels belonging toS are not oriented, and the orienta-
tion of tangent vectors plays of course a crucial role in
the geometry of the approximating field. To overcome
this problem, we note that the optical flow field gives an
instantaneous direction of motion for each pixel. Each
one of the two possible tangent vectors is projected over
the motion vector at that pixel and we keep the vector
that gives the highest result (in norm). Each vector

�!
Vi is

divided by its norm, so we take unitary initial vectors.

2.3. A synthetic example

Let us begin to investigate the results of the minimiza-
tion process on synthetic data. In figure 3 is shown an
instance of theN vectors

�!
Vi , disposed along a rectan-

gular vortex-like structure. In figure 4 the result of the
approximation process using� = 0:1 is shown. The
result seems satisfactory, as it correctly interpolates the
original data and generates a singular point (a zero of the
vector field) at the center of the picture.

Figure 3:Initial value ofN vectors data, disposed along a closed rectangular

shape.

Figure 4:Computation of the interpolating vector field using the initial data

of figure 3. Parameter� = 0:1.

3. RESULTS

We use a SST (Sea Surface Temperature) NOAA
AVHRR image sequence of the sea. The sequence dis-
plays, as shown in figure 1 a vortex, or gyre, turning
clockwise, and also temperature fronts. Our goal is to be
able to model the boundary of the gyre, and follow a par-
ticule of water along its trajectory path. As mentionned
in the previous section, we need the optical flow for pre-
processing. To compute the optical flow, we follow the
method described in [6]. On figure 5 is shown the result
of the optical flow computation. Figure 6 displays the
result of the spatial flow field approximation (computa-
tion time is about 3 seconds on a 233 Mhz Dec alpha
station). Note that the geometry of the field is exactly
that of the gyre, with the correct sense of orientation. In
figure 7 we draw, using the standard Runge-Kuntta nu-
merical scheme, the path of a pixel entering the Strait of
Gibraltar.

Figure 5:Result of the optical flow computation.



Figure 6:Result of the spatial vector field computation.

Figure 7:Computation of the orbit of a pixel.

4. CONCLUSION

A spline vector field model is used to produce a repre-
sentation of sets of disconnected structures interacting
each other in an image. The vector field is a “ first or-
der differential ” representation of the structures, in the
sense that the curves are obtained from the field using
numerical integration. The field is computed by min-
imizing an energy controlling the rotational and diver-
gence parts of the field. The method is applied on satel-
lite data, showing its robutness and effectiveness. It en-
codes in a single representation the different curves that
make the boundaries of different objects present in an
image. The preprocessing uses the optical flow compu-
tation to solve the problem of orienting the initial vectors
on which the approximation is performed. In a work
in preparation, we use one-parameter set of diffeomor-
phisms generated by the optical flow to compute the im-
age of the spline vector field by these diffeomorphisms.
This is needed in the modeling of temporal evolution of
the structures, which is our next target.
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