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ABSTRACT

Current speech technology allows us to build efficient speech recog-
nition systems. However, model learning of knowledge sources in
a speech recognition system is not a closed problem. In addition,
lower demand of computational requirements are crucial to build-
ing real-time systems.

ATROSis an automatic speech recognition system whose acous-
tic, lexical, and syntactical models can be learnt automatically
from training data by using similar techniques. In this paper, an
improved version of ATROSwhich can deal with large smoothed
language models and with large vocabularies is presented. This
version supports acoustic and syntactical models trained with ad-
vanced grammatical inference techniques. It also incorporates new
data structures and improved search algorithms to reduce the com-
putational requirements for decoding. The system has been tested
on a Spanish task of queries to a geographical database (with a
vocabulary of 1,208 words).

1. INTRODUCTION

Nowadays, good speech recognition systems can be built thanks to
the current status of speech technology. However, there are a lot of
aspects that can be improved. Some of these aspects can affect the
knowledge sources themselves (acoustical, lexical, and syntactical
sources) and the way in which the corresponding models can be
learnt from speech and/or text data. Other improvements deal with
computational problems, such as internal data representation and
the search algorithms to handle them in order to decode an input
utterance.

ATROS(Automatically Trainable Recognizer Of Speech) is an
automatic speech recognizer in which all its knowledge sources
can be learnt automatically from real data [7]. The ATROS ver-
sion presented in this paper includes improvements in the aspects
mentioned above. This version is the speech input interface of a
speech understanding system developed under the Spanish project
SENGLAR.

ATROS supports new acoustic models and language models.
Continuous Density Hidden Markov Models (CDHMMs), which
have been trained with the HTK toolkit [14], and hybrid connec-
tionist-structural models [3, 4] have been used as acoustic mod-
els. In addition, stochastic finite state grammars interpolated with
unigrams [12] are used as language models.

With regard to computational issues, new original and well-
known techniques have been incorporated in order to achieve great-
er computational efficiency. Hashing techniques have also been
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introduced to efficiently handle the search space (trellis). The vo-
cabulary has been represented as a prefix tree (tree lexicon), and
language model look-ahead techniques [10] have been also used.
Fast phoneme look-ahead has been introduced in ATROSto reduce
the search space [10]. The smoothed language model is not fully
expanded thanks to the introduction of empty transitions between
the stochastic finite state grammar and a unigram. This implemen-
tation allows for a reduced amount of memory without an increase
in computation time.

The following section is devoted to an ATROSsystem overview.
The representation and training of each knowledge source are de-
scribed in sections 3 and 4. The search procedure and related as-
pects are presented in section 5. Section 6 shows the experiments
that have been carried out. Finally, some conclusions are men-
tioned in section 7.

2. SYSTEM OVERVIEW

ATROS is composed of two parts: thefeature extraction module
and thedecoding module. The first module computes a sequence
of feature vectors from the input speech signal. From this se-
quence, the second module computes a string of words as a hy-
pothesis of the words that have been uttered.

The processes involved in the feature extraction module are:
a) Acquisition and sampling of the speech signal (typically at 16
kHz.) b) Computation of the outputs of a mel-scale filter bank at 10
msec. (typically 22 filters) c) Computation of the cepstrum coeffi-
cients of the outputs of the filter bank (typically at 10 coefficients
plus the energy) d) Computation of the first and second derivatives
of the cepstrum coefficients.

Typically, the feature extraction module produces a feature
vector of 33 components (cepstrum coefficients and their first and
second derivatives) every 10 msec.

The decoding module is based on the statistical approach [6].
In ATROS, the language model is a stochastic regular grammar or
ann-gram model represented by stochastic finite state networks.

The acoustic processor is composed of two parts: the sublexi-
cal one and the lexical one. The sublexical part consists of phone-
like models represented as CDHMMs or hybrid connectionist-struc-
tural models. The lexical part consists of word acoustic models
which are obtained by the concatenation of sublexical models ac-
cording to orthographic-phonetic rules. These models are repre-
sented by stochastic finite state networks whose transitions are la-
belled with phone-like models.

For decoding, the word acoustic models are integrated dynam-
ically in the language model: the transitions in the language model
are substituted by the corresponding word acoustic models. The



decoding process through the integrated network is performed with
a beam-search Viterbi algorithm that is described in section 5.

3. ACOUSTIC, LEXICAL AND LANGUAGE MODELING

3.1. Acoustic and Lexical Models

Different types of sublexical units were modeled through CDHMMs.
The emission probability of each state is represented by a Gaus-
sian mixture density with diagonal covariance matrix. ATROScan
compute the emission probability density values at each state in
two ways. The first one adds the contribution of each Gaussian
from the mixture to the total mass of emission probability, while
the second takes the highest probability density value from all of
the Gaussian emission of the mixtures. This type of computation
allows us to use minus-log values of the probabilities and proba-
bility densities, and consequently, the computation of a maximum
operator presents a lower computational cost than the addition op-
erator. Different numbers of component densities per state were
tested in order to study the relation between the word-error rate
achieved and the recognition speed. For the experiments reported
in section 6, each model had three states without skip transitions.

Hybrid connectionist-structural models composed of hidden
Markov chains and Multilayer Perceptrons (MLPs) to estimate the
emission probabilities are also proposed for acoustic modeling [3,
4]. Different topologies of the Markov chains and MLPs have been
tested.

The lexical models are composed by the concatenation of sub-
lexical models to form word acoustic models.

3.2. Language Models

Two language models were tested in the system. On the one hand,
a trigram model was estimated with the first version of the Stochas-
tic Language Model (SLM) Toolkit [11]. On the other hand, a
language model was estimated through a grammatical inference
technique known as MGGI [12]. This technique, which is con-
ceptually similar to bigrams and incorporates a smoothing method
based on the back-off, estimates more accurate language models
than bigrams.

4. ACOUSTIC AND LANGUAGE TRAINING

4.1. Acoustic models training

The acoustic models were trained with the acoustic material de-
fined in the SENGLAR project: the overall training database gath-
ers 1,529 utterances from 57 speakers (which accounts for nearly
470,000 acoustic frames and 55,000 phonetic units).

The acoustic CDHMM were trained by using the Baum-Welch
algorithm of the HTK toolkit [14] from training data parametrized
into sequences of cepstral coefficients by the ATROSsystem. Two
sorts of sublexical units were tested as illustrated in Table 1. The
first sort were 27 context-independent phone-like units (including
initial, middle and final silences) which were defined in the SEN-
GLAR project. The second sort of sublexical units were triphones
(those that appeared at least 100 times in the training data). This
set of units was composed of 67 triphones and 27 monophones.
Models with 1, 2, 4, 8, 16, 32 and 64 mixtures per state were eval-
uated. State clustering was used when context-dependent models
were trained.

Table 1: Number of total mixtures for phone-like and triphone sub-
lexical units.

Sublexical Number of Maximum Total
units units mixtures number of

per state mixtures

phones 27 32 2,687
phones 27 64 5,362

triphones 67+27 8 4,284
triphones 67+27 16 5,894

Hybrid models of context-independent units were also trained.
The underlying Markov chains had three states or were durational
(with a number of states equal to the average duration of the phone-
unit). MLPs with 27 output units (one for each phone) and an input
layer formed by the actual frame plus four frames of left and right
context (nine frames in total). Different sizes of the hidden layer
(100, 500 and 1,000 hidden units and two layers of 100 units each)
have been tested. We also tried committees of MLPs (CMLPs) [2]
in order to obtain better estimation of the emission probabilities of
the models. We created several committees of MLPs with two or
three MLPs, and the output of the committees was defined as the
average of the outputs of each MLP. Finally, the best performance
was obtained with a committee of three MLPs and Markov chains
of three states. The number of weights of that committee of MLPs
was 237,372.

4.2. Language model training

The training set used for the estimation of both language models
consisted of 8,262 written sentences (81,700 Words) of Queries
to a Spanish Geographic information Database (GDQ) [5], with a
vocabulary of 1,208 words. A test set of 1,147 different written
sentences (11,845 Words) was used to measure the perplexity of
the obtained models.

The perplexity of the test set with the trigram model was 9.44.
In order to estimate a model using the smoothed MGGI language
model, a labeling function had to be defined (for details see [12]).
For the language model used in the system presented in this paper,
a relative position renaming function of 5 intervals was defined.
The test set perplexity presented by this language model was 12.00
while a bigram model presented a test set perplexity of 16.13.

5. SEARCH

The search for the most likely word sequence is approximated
by the most likely state sequence in a network that integrates the
acoustic, lexical and syntactic models.

To build the integrated network, the transitions of the language
model are dynamically substituted by the corresponding acous-
tic models. All word models that correspond to transitions which
leave from a particular state of the language model are represented
as a prefix-tree (tree lexicon) [8].

Figure 1 shows part of an integrated network that corresponds
to a smoothed trigram model. The paths that take into account
the wordk from stateij are illustrated in this figure. Note that
Pr(k j ij) andPr(k j j) may not be in the model, but there
always is a path through the unigram model for wordk.
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Figure 1: Partial view of the representation of the integrated net-
work corresponding to the smoothed trigram model.�(ij) and
�(j) are the interpolation parameters [1] (in practice, these values
are the back-off normalizing factors).

5.1. Beam Search

The search for the most likely state sequence in the integrated net-
work can be performed by using the Viterbi algorithm. This search
strategy is known asSynchronous Search[8].

This strategy is time-consuming; moreover, many paths corre-
spond to low feasible hypotheses that will probably not contribute
to the desired solution.Synchronous Beam Search[9] is a tech-
nique commonly used to overcome this drawback. This technique
consists of maintaining only those hypotheses that are more likely
to survive in the search process. It is a well-known fact that ade-
quate choices of beam search parameters dramatically reduce the
computational search time required without decreasing the system
performance.

5.2. Language Model Look-Ahead

One of the main drawbacks of the tree lexicon technique is that the
word probabilities of the language model must be applied to the
leaves of the tree vocabulary. This fact requires wide beams and,
therefore, a great number of hypotheses are generated.

A solution to this problem consists of using the language model
probabilities in the tree as soon as possible. This can be done by
putting an upper bound of the probabilities associated to the cor-
responding leaves that are a descendant of a node into each node
of the tree [13]. In ATROS, these upper bounds are computed only
once and stored in memory. The memory requirements to store
these bounds for a complete bigram can be very high. In practice,
the use of smoothed languages and their corresponding implemen-
tation allows us to minimize these memory requirements.

5.3. Fast Phoneme Look-Ahead

The fast phoneme look-ahead technique [10] has been incorpo-
rated in ATROSin order to reduce the number of hypotheses which
are considered in the search process and, consequently, to reduce
the search time. The main idea of the fast phoneme look-ahead
consists of determining whether every new phoneme model which
is being started is likely to survive pruning steps in the future. This
is decided by computing an approximate score (look-ahead score)
using a simpler phoneme model (look-ahead phoneme model) and
some future time frames (look-ahead buffer). Several hypotheses

could continue with the same phoneme model and therefore this
computation should only have to be carried out once. The look-
ahead score is combined with the exact score of the predecessor
phoneme model and the phoneme is started if this new value is
over a certain threshold (in way similar to the beam search). If the
phoneme model is started, then the exact score is computed. This
means that the optimal path can be pruned and only a suboptimal
solution may be achieved.

The fast phoneme look-ahead has been incorporated to the sys-
tem in a way similar to the one in [10]. The fast look-ahead score is
computed every time frame not by using the exact phoneme mod-
els, but rather by using a simpler one in order to reduce the amount
of computation. In ATROS, the look-ahead phoneme models had
three states (the same as the exact phoneme models) and two den-
sities in each state. Look-ahead phoneme models with a greater
number of densities were studied, but the recognition results ob-
tained were not offset by the increase in computation. These mod-
els were trained by using the HTK toolkit. Several sizes of the
look-ahead buffer were tested and the optimal value was three
frames.

6. EVALUATION OF THE SYSTEM

In this section we present some experiments that were carried out
to both evaluate the performance of the system and to establish the
influence of each modeling technique. Several configurations of
the system were defined and evaluated in terms of performance as
well as complexity. The task was the GDQ (described previously)
with a vocabulary of 1,208 words.

The performance of the system was measured on a test set
which consisted of 600 utterances from 12 speakers (200 different
sentences, 5,655 words) out of the GDQ application task [5]. Note
that the GDQ database and the utterances used to train the acoustic
models (SENGLAR corpus) were independent with respect to the
speakers, the text and the task.

To evaluate the performance of the system, we matched each
decoded utterance against the correct transcription of the sentence
(in terms of a sequence of words). Then, the word-error rate (wer )
was calculated.

6.1. Experimental results

For each experiment we show the obtained word-error rate and a
measure of the consumed time, given by the number of seconds
which were necessary to process one hundred frames (equivalent
to approximately real time). All the experiments were performed
on a SGI2 workstation R10000 with 384 MB of RAM.

Different beam-search and grammar-scale factors were proved
and the best results for each type of acoustic unit and language
model are shown in Table 2. These experiments were carried out
without using fast phoneme look-ahead. The best performances
were obtained using the trigram-CDHMM64 phone system pro-
ducing awer of 10.7% and using trigram-HMM/CMLP phone
system giving awer of 9.6%. However this last system ran faster.
On the other hand, the results indicate that the smoothed trigram
model estimated with the SLM toolkit performed better than the
MGGI language model.

In order to test the efficiency of the fast phoneme look-ahead,
we repeated the trigram-CDHMM64 experiment of Table 2 with
this technique. Thewer obtained in this case was 12.1 and the
real time factor was 1.9. This means an increase of 1.5 points in



Table 2: Word-error rate (wer ) obtained for the test set along with
the real time factor (t). The language model used is shown in the
first column, and the sublexical units and the maximum number of
mixtures per state in the second one.

Lang. model Sublexical units wer t

MGGI phones (32) 14.3 10.4
trigram phones (32) 12.7 1.9
MGGI phones (64) 12.6 20.5
trigram phones (64) 10.7 8.6
MGGI triphones (8) 13.6 8.5
trigram triphones (8) 12.1 1.7
MGGI triphones (16) 13.6 9.3
trigram triphones (16) 12.0 2.2
MGGI phones HMM/CMLP 10.8 3.1
trigram phones HMM/CMLP 9.6 2.1

thewer, but a savings of 78% in time. This result is similar to
the one obtained without fast phoneme look-ahead using trigram
as language model and triphones with 8 mixtures per state.

7. SUMMARY

An efficient version of the continuous speech recognition system
ATROShas been presented. All the models can be learnt automat-
ically from training data. Lexical and syntactic models are rep-
resented in a similar format. Acoustic models can be CDHMM
or HMM/CMLP. New, well-known search techniques have been
introduced to improve the computational efficiency of ATROS.

Experiments on a task of medium complexity (a vocabulary
of 1,208 words and a perplexity of 9.44 with a trigram language
model) were carried out to assess ATROS. Better performance
was achieved using trigram language models instead of MGGI lan-
guage models. Similar results were achieved with CDHMM and
with HMM/CMLP. Triphones did not improve the results achieved
with phone-like units.

For future work we will continue the research of grammatical
inference methods for language modeling. And we will continue
studying the improvement of contextual acoustic models.
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