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ABSTRACT

We use reversible jump Markov chain Monte Carlo (MCMC)
methods to address the problem of order and parameters es-
timation of noisy polynomial-phase signals within a Bayesian
framework. As posterior distributions of the parameters
are not tractable, MCMC methods are used to simulate
them. E�cient model jumping is achieved by proposing
model space moves from the conditional density of the poly-
nomial coe�cients, estimated with the \one variable at a
time" Metropolis Hasting algorithm. This algorithm pro-
vides simultaneous order and parameters estimation from
simulated marginal posterior distributions. Results on sim-
ulated data are given and discussed.

1. PROBLEM STATEMENT

The signal under study is a noisy polynomial phase signal
sn as:

sn = A exp(j

MX
i=0

ain
i) + en (1)

where en is a complex Gaussian i.i.d. noise of known vari-
ance �2 and zero mean.

The aim of this paper is to estimate the orderM and the
parameters a = fa0; a1; : : : ; aMg of the polynomial phase.
This problem is encountered in radar systems or vibration
monitoring for example, see [4] for a detailed introduction.

The Bayesian approach consists in regarding a and M
as being drawn from prior distributions which re
ect degree
of knowledge on the parameters values. The Bayesian so-
lution is then to evaluate the posterior density of a and M
conditional on the data s = fs0; s1; : : : ; sN�1g and the prior
information I, abbreviated as p(M;ajs; I). As posterior
distributions of the parameters are not tractable, MCMC
methods are used to simulate them. Estimating M implies
a change in dimensionality so a reversible jump algorithm
is proposed.

The estimated values of a and M are then computed re-
spectively from the mean (MMSE estimator) and the maxi-
mum (MAP estimator) of the simulated posterior densities,
[3], [7].

2. POSTERIOR DENSITIES

By applying Bayes' theorem, the joint posterior probability
density of the parameters, p(M;a; A; �2js; I), is :

p(M;a; A; �2js; I) / p(M; a; A; �2jI)p(sjM;a; A; �2; I)
(2)

where p(M;a; A;�2jI) is the parameter prior,
p(sjM;a; A; �2; I) is the likelihood function. Since en is

Gaussian, the likelihood is:

p(sjM; a;A; �2; I) =

N�1Y
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Parameters a and M are assumed to be uniformly dis-
tributed to express ignorance about the value of the pa-
rameter vector in absence of data. We use Je�rey's prior
for �, [6] :

p(�2=I) /
1

�2
: (4)

Then the joint posterior density (2) is:

p(M;a; A; �2js; I) /
1
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This form of distribution allows us to eliminate the so-called
nuisance parameters A and �2 by integration:

p(M;ajs; I) =

Z 1

A=�1

Z 1

�2=0

p(M;a; A;�2js; I)dAd�2

(6)

After computation:

p(M;ajs; I) / (
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s�ksk�
1

4N2
(
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sk exp(�j
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i))2)�(N+3=2) (7)

It is worth noticing that eq.(7) is highly non-linear in the
coe�cients a and that an expression of p(M j : : : ) can not be
obtained in closed form, even up to a normalizing constant.
We develop in the following MCMC methods to estimate
p(M;ajs; I).



3. REVERSIBLE JUMP MCMC

Metropolis-Hastings algorithms produce a Markov chain
which converges to a required distribution p(�) from a con-
venient density, easy to simulate. Each step consists of:

� Choosing the subset of the parameters � to update.

� Proposing new values for the subset associated with
that move by drawing from an arbitrary, convenient
density:

�0u � qu(�
0
uj��u) (8)

where �u denotes the complementary subset of u.

� Calculating the acceptance probability for this move,
�(�! �0):

�(�! �0) = min

�
1;
p(�0uj��u)qu(�uj��u)

p(�uj��u)qu(�0uj��u)

�
(9)

� Either

{ Accepting the move and setting the parameters
to the proposed values or

{ Rejecting the move, not changing any parame-
ter value

Reversible jump MCMC (Green 1995) is a generalization
which introduces moves between parameter spaces of dif-
ferent dimensionality. Candidates are proposed according
to a set of proposal distributions. These candidates are ran-
domly accepted following an acceptance ratio which ensures
reversibility and thus invariance of the Markov chain with
respect to the posterior distribution. One problem is to
evaluate a ratio of probability measures between subspaces
of di�erent dimensions. To avoid this problem Green has
proposed to perform reversible jumps between subspaces
via proper dimension matching, see [2] for details.

If P (k ! k0) is the probability of proposing a move
from a parameter space of dimension k to one of dimen-
sion k0, and � contains the parameters, then the required
acceptance probability becomes:

�((k;�k)! (k0; �k
0

) =

min

�
1;

p(k0; �k
0

j�)P (k0 ! k)q(�kjk0; �k
0

; �)

p(k; �kj�)P (k! k0)q(�k0 jk; �k; �)
J(k ! k0)

�
(10)

where J(k! k0) is the Jacobian of the transformation.

4. SAMPLING STRATEGY

The parameters to be sampled are the coe�cients a and the
order M of the polynomial phase.

4.1. Model moves

Sampling M involves a change in dimensionality, so a re-
versible jump move is used. We have chosen the following
complementary reversible jumps to ensure reversibility:

1. increasing order: M ! M + 1.

2. decreasing order: M !M � 1.

This choice is purely heuristic and has the main advantage
to be very simple to implement, the choice of jumps has only
an in
uence on the rate of convergence of the algorithm.
Another scheme would be to jump from an order M to an
order M 0 for example.

At each iteration, one of the candidate movement, M !
M + 1 or M ! M � 1 is randomly chosen with respective
probabilities pM and 1 � pM for all 1 � M � Mmax. For
M = 1, decreasing order is impossible, so 1� pM1 = 1; for
M = Mmax, increasing order is impossible so pMmax = 0.
All others values of M give increasing order or decreasing
order with the same probability and each time M corre-
sponding values are generated for the M polynomial co-
e�cients. From the resulting order M , new values of the
complete vector aM is generated.

4.2. Algorithm

In this section, algorithms are given in details. The main
procedure is the following:

Reversible MCMC algorithm

1. Initialization: set (M0;aM0) 2 f1; : : : ;Mmaxg �A
belonging to the support of the posterior density, (7).

2. Iteration i (i = 1; : : : ; T )

� Update the parameters aiM with \M-H one vari-

able at a time" algorithm.

� Draw u � U[0;1]

{ if u � piM \increasing order".

{ else \decreasing order".

{ end if.

3. i i+ 1, goto 2

The main algorithm calls the following procedures:

M-H one variable at a time

1. Iteration m (m = 0; : : : ;M i)

� Draw ym � U[��m ;�m ]

� Calculate the acceptance coe�cient:

�(aim; ym) = min(1; ri)

ri =
p(ymjai0 ;:::;a

i
m�1 ;a

i�1
m+1

;:::;ai�1
M

)

p(aimjai0;:::;a
i
m�1

;ai�1
m+1

;:::;ai�1
M

)

� Draw u � U[0;1]

{ if um � �(aim; ym) then aim = ym.

{ else aim = ai�1m .

{ end if.

2. m m+ 1, goto 1

increasing order

� Draw y � N (0;�M+)

� Calculate the acceptance probability

�
�
(M i�1;a); (M+;y)

�
= min(1; ri)

ri =
p(M+;y)(1�p

M+ )j�
M+ j

1=2 exp(�yt��1
M+

y)

p(Mi�1 ;ai�1)p
M+ j�M+ j1=2 exp(�at

(i�1)��1
M+

a
(i�1))



� Draw u � U[0;1]

{ if u � �
�
(M i�1;a); (M+;y)

�
then ai = y,

M i = M+.

{ else ai = ai�1, M i = M i�1

{ end if.

decreasing order

� Draw y � N (0;�M�)

� Calculate the acceptance probability

�
�
((M i�1;a); (M�;y)

�
= min(1; ri)

ri =
p(M�;y)p�

M
j�
M� j1=2 exp(�yt��1

M�
y)

p(Mi�1;ai�1)(1�p
M�

)j�
M�

j1=2 exp(�at
(i�1)��1

M�
a(i�1))

� Draw u � U[0;1]

{ if u � �
�
((M i�1;a); (M�;y)

�
then ai = y,

M i = M�.

{ else ai = ai�1, M i = M i�1

{ end if.

Notation

� T : number of iterations.

� M i�1 + 1 = M+, M i�1 � 1 =M�.

� A: subset of possible values of a.

� u � p(u): u is distributed according to p(u).

� U[a;b]: uniform distribution on [a; b].

� N (m;�): Gaussian multivariate distribution with mean
m and covariance matrix �.

Some comments and precisions about these algorithms:

� The Jacobian term does not appear in acceptance
probability of the moves procedures since parameters
are generated directly in the new parameter space.

� New values of a are drawn from Gaussian densities
since posterior densities of the coe�cients do not have
a standard form.

� The M-H \one-variable at a time" algorithm com-
bines M + 1 updates to draw the posterior density
of the parameter vector a. It is usually used because
it is far easier to �nd several conditional kernels that
converge to their respective conditional densities than
to �nd one kernel that converges to the joint, see [1]
for a simple exposition of the M-H algorithm.

5. SIMULATION RESULTS

In order to study performances of the proposed algorithm,
computer simulations using N = 100 samples polynomial-
phase signal of order M = 3; 4 and signal to noise ratio
snr = 0; 5; 10dB have been drawn. Parameters for M = 3
are a0 = �=4, a1 = �0:02 and a2 = 0:002, for M = 4, the
�rst parameters are the same and a4 = �:0001.

Parameters of the algorithm are Mmax = 6, �0 = 0:015,
�i = 3 exp(�2(1 + i)), �i;i = 2exp(�i), � = �. Note that

parameter a0 a1 a2
true value 0:7854 �0:02 0:002

rsb = 10dB
mean 0.7623 -0.0186 0.002
var 1.49e-2 1.05e-4 4.96e-8

rsb = 5dB
mean 0.7701 -0.0177 0.002
var 2.38e-2 1.50e-4 2.48e-7

rsb = 0dB
mean 0.5444 -0.0046 0.0018
var 6e-2 1.51e-4 5.70e-8

Table 1: Mean and standard deviation of the polynomial
coe�cients for M = 3 and rsb = 10; 5; 0dB
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Figure 1: Generated chains for a0, a1 and a2, rsb = 10dB
(top to bottom)

the values of these parameters only have an in
uence on the
rate of convergence of the algorithm. Initial values M0; aM0

are randomly chosen.

Figure (1) shows the chains generated by the algorithm
for a three order phase signal and a snr = 10dB. Chain
generated for M has not been given since it remains at the
true order M = 3 from a number of iterations equal to 200
samples.

Figure (2) shows posterior distribution p(M jy) of the
four order phase signal for three snr.

Figures (3, 4, 5) show posterior distribution of the poly-
nomial coe�cients following the snr.

Table (1) gives mean and variance over 30 realizations
of T = 5000 samples, ignoring the �rst T0 = 2000 samples
as a burning time period.

Let us note that results obtained show classical charac-
teristics of polynomial-phase signals: supports of the pos-
terior densities increase as the snr decrease, relative error
and support are always the largest for i = 0, and decrease
monotonically with i (�gs. 3,4,5), [5].

In short, the order is correctly found, at more than 90%
whatever is the snr, (�g. 2) and estimation of the parame-
ters is accurate, (tab. 1). Let us insist on the fact that the
algorithm provides much more information than classical
approaches, particularly posterior densities of the parame-
ters.
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Figure 2: Posterior distribution p(M jy), M = 4, for
10; 5; 0dB (top to bottom)
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Figure 3: Estimation of the posterior distribution p(aijy),
M = 4, for 0dB
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Figure 4: Estimation of the posterior distribution p(aijy),
M = 4, for 5dB
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Figure 5: Estimation of the posterior distribution p(aijy),
M = 4, for 10dB

6. CONCLUSION

A solution to order determination and parameters estima-
tion of polynomial phase signals has been provided. An-
alytic posterior distribution of the parameters cannot be
workable, so a solution combining M-H algorithm to esti-
mate polynomial parameters and a reversible jump algo-
rithm to determine the order is proposed. The algorithm
easy to implement and gives simultaneous estimation of all
the parameters required. Simulated results are very rele-
vant.
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