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ABSTRACT

The environmental conditions in which a speech recog-
nition system should be operating are usually nonstation-
ary. We present an approach to compensate for the effects
of time-varying noise using a bank of Kalman filters. The
presented method is based on the interacting multiple model
(IMM) technique well-known in the area of multiple target
tracking. Moreover, we propose a way to get fixed-interval
smoothed estimates for the environmental parameters. The
performances of the proposed approaches are evaluated in
the continuous digit recognition experiments where not only
the slowly evolving noise but also the rapidly varying noise
sources are added to simulate the noisy environments.

1. INTRODUCTION

Several approaches to compensate for the time-varying
environments have been attempted for robust speech recog-
nition in adverse conditions. Since the background noise
characteristics that exist in real world usually show non-
stationary nature, these approaches are considered desirable
for practical use of the recognition systems.

In [1], the sequentialexpectation maximization(EM) al-
gorithm is used to estimate the environmental parameters
in an on-line fashion. The time-varying noise mean vector
is tracked by adopting the conventional exponential forget-
ting scheme. Further improvement on the sequential EM
algorithm has been achieved with the application of the in-
teracting multiple model (IMM) method in which both the
estimates of the mean and variance can be simultaneously
updated for each time [2], [3].

In this paper, we are based on the IMM method where
a bank of Kalman filters is used to cope with time-varying
noise characteristics. Clean feature vectors are statistically
characterized by a mixture of Gaussian distributions, and
each mixture component forms a Kalman filter. For mathe-
matical tractability, the speech contamination rule expressed
in a nonlinear function of the relevant vectors is linearly ap-
proximated for each mixture component. Parameter estima-
tion is proceeded in both the forward and backward direc-
tions, and the estimate at a specific time is obtained in a

similar way to the fixed-interval smoothing which is gener-
ally encountered in Kalman filtering techniques. Through
a number of continuous-digit-recognition experiments, we
can observe that the proposed method is effective not only
in a slowly evolving environment but also in rapidly varying
environments where sudden appearance or disappearance of
the added noise exists.

2. ENVIRONMENT COMPENSATION BASED ON
FUNCTION LINEARIZATION

Let z = [z1; z2; � � � ; zN ]0 be a noisy feature vector with
dimensionN . Assume thatz is related to the clean feature
x = [x1; x2; � � � ; xN ]

0 and the noisen = [n1; n2; � � � ; nN ]
0

by

z = f(n;x) (1)

and that all the vectorsz, x andn at a time are statistically
independent of those at a different time. With environment
compensation, we mean that given a noisy feature vector se-
quenceZ = fz1; z2; � � � ; zT g, we estimate the clean feature
vector sequenceX = fx1;x2; � � � ;xT g. Here, as is usually
adopted in various approaches, the probability density func-
tion (PDF) of the clean feature vector is given by a mixture
of Gaussian distributions such that

p(x) =

MX
k=1

p(k)N (x;�k ;�k) (2)

whereM is the total number of mixture components and
p(k), �k and�k represent the given a priori probability,
mean and covariance of thekth Gaussian distribution, re-
spectively. As for the distribution of the noise, which is sta-
tistically independent of the clean feature, it is assumed to
be a single Gaussian distributionN (n;�n;�n) where the
mean vector�nand the covariance�n are not known and
should be estimated during the environment compensation
procedure.

It gets usually difficult to estimate directly the environ-
mental parameters such as�n and�n due to the nonlinear-
ity of the speech contamination rulef(�; �) in (1). One pos-
sible way to alleviate this difficulty is to piecewise linearly



approximate the given nonlinear function. This indicates
that in thekth mixture component,f(�; �) is approximated
by

z = Akx+Bkn+ Ck (3)

wherefAk(N �N); Bk(N �N); Ck(N � 1)g are constant
matrices. What is remained is to obtainfAk; Bk; Ckg and
we apply the statistical linear approximation (SLA) method
proposed in [4] for that purpose.

For thekth mixture component,�k and the given initial
value for�n are used as the center of Taylor series expan-
sion, and we can characterizef(�; �) by a mixture of linear
functions in such a form as shown in (3). This piecewise lin-
ear modeling of the speech contamination process enables
us to solve the problem of environmental parameter esti-
mation. After the environmental parameter estimation, the
environment compensation procedure is completed by com-
puting the clean feature estimate according to the minimum
mean square error (MMSE) criterion.

3. IMM-BASED ENVIRONMENT ESTIMATION

As in [2], we assume that the background noise evolves
according to the following process.

nt+1 = nt +wt (4)

wherewt is a Gaussian process possessing the following
statistical properties.

E [wt] = 0

E [wtw
0

t] = Q

�
for t > 0 (5)

in which 0 represents a zero vector whileQ is a fixed co-
variance matrix independent of the time,t. Based upon the
environment evolution modeling (4) and the linearized fea-
ture relationship (3), we can construct a linear state space
model for each mixture component. All the mixture com-
ponents share the same state transition equation, in which
nt is treated as the state at timet even though they have
separate observation models. Given the constructed multi-
ple linear state space models, the environmental parameters,
� = f�n;�ng are sequentially estimated using the IMM
method.

In the following, we will briefly summarize the param-
eter estimation procedure which is divided into three steps
[2]. The first step is theMixing ( or Output Generation)
Stepin which the parameter estimates are obtained by com-
bining the corresponding estimates of all the mixture com-
ponents. Let̂�n(t) and�̂n(t) respectively denote the com-
bined estimates for�n and�n at timet given the noisy data
sequenceZt = fz1; z2; � � � ; ztg. Then, they are generated

by

�̂n(t) =

MX
j=1

�̂n(tjj)
j(t)

�̂n(t) =

MX
j=1


j(t)
h
�̂n(tjj) + (�̂n(tjj)� �̂n(t))

�(�̂n(tjj)� �̂n(t))
0
�
(6)

in which

�̂n(tjj) = E [ntjkt = j;Zt]

�̂n(tjj) = Cov [ntjkt = j;Zt]


j(t) = p(kt = jjZt) (7)

with kt being the mixture component index at timet.
The next step is theKalman Stepin which the conven-

tional Kalman update is carried out based on the parame-
ter estimates computed at the previous time. Let�p

n
(tjj)

and�p
n
(tjj) respectively be the mean and covariance of the

one-step-ahead predictive state estimate in thejth mixture
component at timet. Then, by using the usual time-update
approach, we can derive

�p
n
(tjj) = �̂n(t� 1)

�p
n
(tjj) = �̂n(t� 1) +Q : (8)

Due to the assumed linear state space model given by (3)
and (4), the innovatione(tjj) in the jth Kalman filter at
time t is defined by

e(tjj) = zt �Aj�j �Bj�
p
n
(tjj)� Cj (9)

and further its covariance

Re(tjj) = Bj�
p
n
(tjj)B0

j +Aj�jA
0

j : (10)

In addition, the Kalman gain,Kf (tjj) is obtained as fol-
lows.

Kf (tjj) = �p
n
(tjj)B0

jR
�1
e

(tjj) : (11)

With e(tjj), Re(tjj) andKf (tjj), we can computê�n(tjj)
and�̂n(tjj) by the use of conventional measurement-update
scheme shown below.

�̂n(tjj) = �p
n
(tjj) +Kf (tjj)e(tjj)

�̂n(tjj) = �p
n
(tjj)�Kf (tjj)Bj�

p
n
(tjj) : (12)

From various experiments, we have observed that this Kalman
filtering approach is not effective in improving recognition
performance. Large deviation of the parameter estimates
along the time axis has been found responsible for the phe-
nomena. For that reason, we have introduced a modified



approach where the original Kalman gain is shrunk in order
to avoid an abrupt change in parameter estimates [2]. The
Kalman gain is modified such that

K�

f (tjj) = �Kf (tjj) (13)

whereK�

f represents the shrunk Kalman gain and� referred
to the shrinking factor is a positive scalar between(0; 1).

After theKalman Step, we conduct theProbability Cal-
culation Stepin which the posterior probability correspond-
ing to each mixture component is updated. Since the mix-
ture component is assumed to be independent of the previ-
ous observations, we have


j(t) = p(kt = jjZt)

= p(kt = jjzt;Zt�1)

=
p(ztjkt = j;Zt�1)p(kt = j)

p(ztjZt�1)
(14)

wherep(kt = j) is the prior probability of thejth mixture
component andp(ztjZt�1) plays the role of a normalizing
term such that the summation of
j(t) over allj should be
1. Moreover,p(ztjkt = j;Zt�1) represents the one-step-
ahead predictive likelihood of the observation within the
jth Kalman filter, and can be calculated during theKalman
Step.

4. FIXED-INTERVAL SMOOTHING

In this section, a new method to do fixed-interval smooth-
ing under the IMM structure is proposed. As in [1] and [2],
the sequential parameter estimation is proceeded in both the
forward and backward directions, and the two separate es-
timates are combined to produce the smoothed estimate at
each time. Let us define

�
f
t = E [ntjz1; z2; � � � ; zt]

�f
t = Cov [ntjz1; z2; � � � ; zt]

�
b;p
t = E [ntjzt+1; zt+2; � � � ; zT ]

�b;p
t = Cov [ntjzt+1; zt+2; � � � ; zT ] (15)

Then,
n
�
f
t ;�

f
t

o
can be computed in the forward pass of

estimation while
n
�
b;p
t ;�b;p

t

o
can be obtained in the back-

ward pass with a slight modification to the IMM method.
Our approach is based on the assumption that the two sets
of estimates are derived from a single Kalman filter model
[5]. If the smoothed estimates aref�st ;�

s
tg, they are given

by

�st = �s
t

��
�f
t

�
�1

�
f
t +

�
�b;p
t

�
�1

�
b;p
t

�

�s
t =

��
�f
t

�
�1

+
�
�b;p
t

�
�1
�
�1

: (16)

5. CONTINUOUS DIGIT RECOGNITION
EXPERIMENTS

Performances of the IMM method were evaluated with
a number of speaker-independent continuous digit recogni-
tion experiments. Utterances from 93 speakers constructed
the training data and those from the other 47 speakers were
used for evaluation. A 19th-order mel-scaled log filterbank
energy vector was extracted for each frame of 10 ms with
the sampling rate of 8 kHz. By applying discrete cosine
transform (DCT), a 12th-order cepstral coefficient vector
was derived for each frame. Derived cepstrum vectors and
their first-order differences, delta-cepstrum vectors were used
for recognition. Each digit was modeled by a five-state
semi-continuous hidden Markov model (HMM) where the
codebook size was 256 for both the cepstrum and delta-
cepstrum.

Environment compensation procedures were carried out
in the log spectral domain. For each frame of input signal,
the noisy feature vector which was represented by 19 mel-
scaled log filterbank energies was transformed to a clean
feature estimate. Clean speech features were modeled by
a mixture of 128 Gaussian distributions with diagonal co-
variance matrices. We took the second-order SLA method
to approximate the speech contamination rule by the linear
model of (3) [4].

Three kinds of typical noise sources were applied to
simulate the noisy environments. Two of them are the white
and babble noises from the NOISEX-92 database, and the
other is a highly nonstationary noise collected from the record-
ing of consecutive impulsive sounds. Noise samples from
these three sources were added to the pure speech waveform
by varying the signal-to-noise ratio (SNR). From the time-
frequency analyses, it was found that the white noise is al-
most stationary while the characteristic of the babble noise
slowly changes. As for the impulsive noise, it was gener-
ated when various solid materials were irregularly beaten.
For that reason, if this noise is added to a speech waveform,
some parts of the data are affected by the existence of im-
pulses while the other parts can remain without any noise.

All the experimental results of the IMM method shown
in this paper were obtained with the Kalman gain shrinking
factor of 0.3, which could yield the best results. Recognition
performances of the proposed approach are shown in Figs.
1, 2 and 3 for the white, babble and impulsive noise, re-
spectively. For all the three types of noise, the IMM method
could achieve remarkable improvements in recognition per-
formance compared to those obtained without such a pro-
cessing of noise. What is noticeable is that the IMM-based
approach is effective in compensating not only the station-
ary noise but also the highly nonstationary noise.
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Figure 1: Recognition performance with additive white
noise.
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Figure 2: Recognition performance with additive babble
noise.
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Figure 3: Recognition performance with additive impulsive
noise.

6. CONCLUSIONS

In this paper, we applied the IMM approach for the com-
pensation of time-varying noises. The environmental pa-
rameters associated with the noise characteristics were es-
timated in an on-line fashion based on the Kalman filtering
scheme. In order to obtain smoothed estimates, the sequen-
tial estimation procedure was proceeded both in the forward
and backward directions, We could discover the effective-
ness of the proposed method with a series of speech recog-
nition experiments under various background environments.
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