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ABSTRACT

The goal of this paper is to introduce the RCFA (Recursive Cost
Function Adaptation) algorithm. The derivation of the new algo-
rithm does not use an estimator of the instantaneous error as the
previous CFA (Cost Function Adaptation) algorithms did. In the
RCFA case, the new error power is computing from the previous
error power using an usual LMS recursive equation. The proposed
method improves the sensitivity of the error power with respect to
the noisy error, while the other benefits of the CFA algorithms in
terms of the convergencespeedand residual error remain. The prop-
erties of the new algorithm will be compared, using computer sim-
ulations, to standard LMS and LMF. The effect of the parameters
involved in the design of the error power adaptive subsystemis also
discussed.

1. INTRODUCTION

1.1. Quadratic and Non-quadratic Algorithms

The adaptive LMS (Least Mean Square) [1] algorithm has received
a great deal of attention during the last decades, and it has been
used in many applications due to its simplicity and relatively well-
behaved performance. However, the convergence speed to opti-
mal filter coefficients is relatively slow. This can be a drawback in
the case of the digital echo cancellation, where one of the goals is
to reduce the adaptation time, during which transmission of useful
data is not possible. More recently, high order error power algo-
rithms have been proposed. Walach and Widrow studied the use of
the fourth power of the error, and the LMF (Least Mean Fourth)
algorithm resulted [2]. Unfortunately, this algorithm has stability
problems. Shah and Cowan investigated NQSGr (non-quadratic
stochastic gradient algorithms) with arbitrary constant error power
r (2 < r < 3), and their results indicated that these improve sta-
bility [3].

1.2. Previous Cost Functions Algorithms

The CFA (Cost Function Adaptation) adaptive algorithm was first
introduced in [4]. In this approach the error power is a function
of the instantaneous error r = r(ek), and the new cost function
Jr = E[jekj

r] outcomes. The derivation of this CFA stochas-
tic gradient algorithm follows the cancellation of the posterior er-
ror output, encountered also at the affine projection and normal-
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ized LMS (NLMS) algorithms [5]. The resulted CFA algorithm is
in fact a piecewise non-quadratic algorithm, and the error power is
updated using the relationship:

rk+1 � r(jekj) =
REdB

jekjdB
; (1)

whereREdB is an arbitrary constant and jekjdB is the error modu-
lus, measured in dBs. The weights are computed using the simple
recursive relation as in the case of non-quadratic error power rk:

ĥk+1 = ĥk + ��rk�xk�jekj
rk�1�sgn(ek): (2)

However the error powermust be updated in terms of a well-behaved
estimator of the instantaneous error, otherwise instability can oc-
cur [6]. At the beginning two types of error mappings have been
tried [4]: the running average of the modulus of the instantaneous
error and the log running average of the squared instantaneous er-
ror, resulting the following CFA algorithms: the decreasing stair-
case power-error algorithm and the decreasing smooth power-
error algorithm [4]. Then the normalised tap-error vector norm
was used to reduce the sensitivity to the noisy error [6]. This error
estimator is quite smooth, but sometimes it is difficult to calculate
in practical problems.

A more general case was pointed out in [7], where the error
power updating rule

rk+1 � r(jekj) =
A

jekjdB
B�1

; (3)

was derived by enforcing the same direction of the instantaneous
gradient as in the case of non-quadratic algorithms:

ĥk+1 = ĥk + ��B�rk�xk�jekj
rk�1�sgn(ek): (4)

Here A and B are arbitrary constants and B should be positive. If
B = 1 we retrieve LMS (r(je(k)j) = 2), LMF (r(je(k)j) = 4)
and NQSGr (r(je(k)j) = r =const.). For B = 2 we have CFA.

The LCFA (Linear Cost Function Adaptation) algorithm is a
special case of this family. The error power r is adjusted in such
manner that the error power is linearly decreasing during the time
of adaptation. A new error mapping was implemented. This was
done using the technique of the peak detector in classical ampli-
tude modulation. We pass the logarithmic modulus of the instanta-
neous error through a first order recursive digital filter, the equiv-
alent of the low-pass RC filter. The instantaneous error is usually
very noisy, and its spectrum is quite flat. If the error is processed as
mentioned above, the logarithmic output is linear decreasing, and
also the error power is linear decreasing [7].
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Figure 1: Echo path identification setup.

2. THE RECURSIVE COST FUNCTION ADAPTATION
ALGORITHM

2.1. The adaptive filter framework

The simplified block diagram of the main echo-path identification
system (EPIS) is shown in Figure 1. The vectors xk , ĥk and hk
are the transpose of the input observations vector, of the estimated
filter coefficients vector, and respectively of the echo-path filter co-
efficients vector:

xk = [xk; xk�1; : : :; xk�N+1]
t;

ĥk = [ĥ0; ĥ1; : : :; ĥN�1]
t;

hk = [h0; h1; : : :; hN�1]
t:

(5)

N is the number of filter coefficients. The echo path output signal
yk and the synthetic echo signal ŷk are given by

yk = h
t

kxk; ŷk = ĥ
t

kxk: (6)

Inserting the attenuated far-end signal fk in the error signal ek , we
obtain

ek = yk + fk � ŷk = fk � (ĥk � hk)
t
xk; (7)

and with the tap-error vector �hk = ĥk � hk , it results

ek = fk ��htkxk: (8)
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Figure 2: Error power identification setup.
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Figure 3: The learning curves of the RCFA, LMS and LMF algo-
rithms.

2.2. Derivation of the proposed algorithm

Consider the LMS algorithm

ĥk+1 = ĥk + 2��xk�ek; (9)

where� is the step-size of the echo-path identification system. From
the equation (8) we have

ĥk+1 = ĥk + 2�xk(fk ��htkxk): (10)

If the channel is slowly varying, then we can subtract the echo-path
filter coefficients vector from both sides of the equation (10). It fol-
lows

�hk+1 � �hk + 2�xk(fk ��htkxk): (11)

It is the interest to determine the relationship between the instanta-
neous error ek of the adaptive filter and the new error power rk+1
which is to be used to update the adaptive filter coefficients with
the equation (2).

Suppose that we are not certain of the ”unknown error power”
rk+1 . Reasoningas above,we can use the LMS algorithm and com-
pute an ”estimate of the new error power” r̂k+1. For this reason we
need the ”near-end signal”, and this will be the instantaneous error
ek , because rk is expected to be a function of ek . We need also the
”attenuated far-end signal”. It must have similar statistics proper-
ties as the ”near-end signal”. From the available signals we select
the input observation sample xk, which is subject to an attenuation
'k . The attenuation might be constantor not, whether we use some
appropriate averages of the attenuated far-end signal fk , or simply
fk. We thus have the useful equations:

�rk = r̂k � rk;

�k = rk + 'kxk � r̂k = 'kxk ��rkek;

r̂k+1 = r̂k + 2 � ��ek � �k;

(12)

where �k is the error signal and � is the step-size of the error power
adaptation subsystem (EPAS). Now the equations (12) can give us
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Figure 4: RCFA learning curves and EPAS step-sizes.

the estimated error power, and thus r̂k can be used to update the
weights with the equation

ĥk+1 = ĥk + ��r̂k�xk�jekj
r̂k�1�sgn(ek): (13)

The equations (12) for EPAS, and(13) for EPIS, together with Fig-
ure 1 and Figure 2 define the proposed recursive cost function al-
gorithm.
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Figure 5: Estimated error power and EPAS step-sizes.

Consider now that the unknown error power is slowly varying
rk+1 ' rk , and subtract them from both sides of the last of the (12)
equations. We have

r̂k+1 � rk+1 = r̂k � rk + 2 � ��ek � �k: (14)

From the first two of the (12) equations we obtain

�rk+1 = �rk + 2 � ��ek � �k

= �rk + 2 � ��ek � ('kxk ��rkek)

= 2�'kxkek +�rk(1� 2�ek
2):

(15)

Applying previous recursion P times with respect to k, we con-
clude that

�rP+1 = �P + �P�P�1

+�P�P�1�P�2 + � � �+ �P�P�1 � � ��1�0

+�P�P�1 � � ��1�0�r0;

(16)

where
�k = 2�ek'kxk; �k = 1� 2�e2k: (17)

The convergence of the error power adaptation subsystem is
done by the convergence of the product

1Y

k=0

(1 � 2�e2k): (18)

This is equivalent [8] with the convergence of the series

1X

k=0

e
2
k: (19)

However the stability of the overall adaptive system is more diffi-
cult to predict and will be the goal of a future task.

3. SIMULATIONS

In order to test the proposed algorithm, the following framework
was used:

� The channel considered has one zero at the origin and one
pole at 0.8.

� The number of filter coefficients is N = 40.

� The input signal is a binary one (xk = �1).

� The attenuated far-end signal is modeled by an independent
random bipolar sequence (fk = �f ).

� The level fof the attenuated far-end signal was -20dB.

� The step-size of the main adaptive filter is � = 5 � 10�4 .

� The performance measure is the normalised form of the tap-
error vector norm:

pk =
kĥk � hkk

khkk
: (20)

� The learning curves obtained are the average of 20 runs.

� The unknown error power rk is a constant function.

� The initial estimated error power is r̂0 = 4.

� The attenuation 'k is constant ('k = f ).
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Figure 6: Learning curves of RCFA for different rk .

Three types of results are presented in this paper.
Figure 3 shows a comparison between LMS, LMF and RCFA

(� = 0:001; rk = 1) algorithms, from the convergence speed and
steady-state point of view. It is clear now that RCFA has a faster
convergence than both algorithms, and the steady-state properties
are the same as of the LMS algorithm.

Figures 4 (for learning curves)and Figure 5 (for estimated error
power r̂k) illustrate the performances of the RCFA algorithms if
the EPAS step-size changes. For a small step-size (� = 0:0005),
the estimated error power decreases slowly, and as a consequence
the respective RCFA algorithm behaves closer to LMF or NQSGr,
(2:8 < r < 3:5). For � = 0:0015, the corresponding RCFA has a
faster convergence, but the steady-state is worst than for the LMS
algorithm (r̂1 = 1:4).

The same type of comparison was done from the unknown er-
ror power rk point of view. The choice of the constant function rk
affects both the convergence rate and the steady-state (Figure 6).
Also the estimated error power r̂k is changed (Figure 7). Clearly,
a trade-off should be done between the parameters involved in the
design of this complex adaptive filter, i.e. �; rk , and respectively
�.

The plots from Figures 5 and 7 show also that the error power is
not very sensitive to noisy error during adaptation and steady-state.
The decrease of the estimated error power is smooth, and almost
monotonic.

We notice also in our simulations that the RCFA algorithm has
a better stability than the LMF and other CFA algorithms. An ex-
act assessmentof this effect might be the goal a future paper. How-
ever we suppose that the initial fast decrease of the estimated error
power is one of the contributed factors.

4. CONCLUSIONS

In this paper, the new recursive cost function adaptation algorithm
has been proposed. It has been shown that the RCFA algorithm
gives better results compared to standard LMS and LMF for data
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Figure 7: Estimated error power for different rk .

echo cancellation. Also the behavior for different initialization pa-
rameters was discussed. However there is still a lot of work in the
future, for instance the challenge of the stability for the overall RCFA
algorithm.
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