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ABSTRACT

Simultaneous frequency and direction-of-arrival (DOA) es-
timation can be formulated as a 2D processing problem or
as a set of coupled 1D problems. In narrow-band cases the
2D approach can be used to remove the need for frequency-
DOA pairing procedures but the price can be a considerably
higher computational cost. Therefore, the 1D approach a vi-
able alternative in many applications. This paper presents an
ESPRIT based technique using the multiple 1D approach.
It requires few sensors, guarantees identifiability of the pa-
rameters and admits several sources on the same frequency
or DOA.

1. INTRODUCTION

In recent years, a number of high resolution eigenstructure
based methods have been developed for the 2D narrow-band
source location problem, many of which are based on vari-
ants of the ESPRIT algorithm. The ESPRIT family of meth-
ods have some well-known desirable features that motivates
their popularity; they do not require array calibration, they
are search free and are fairly robust against array imperfec-
tions. ESPRIT can be applied in frequency-DOA estimation
either as a 1D method in a separated approach [1]–[4], to
yield separate estimates of the frequencies and DOAs, or as
a 2D method on the full problem [5],[6]. In the former case
one needs a pairing procedure to find the correct frequency-
DOA pairs, and one must also by some means ascertain that
the pairing problem has a unique solution. The latter can
be achieved e.g. with the marked subspace device [3],[4].
Methods for the full 2D problem, such as the recently de-
veloped 2DunitaryESPRIT [6], avoid this obstacle but the
price paid is a higher numerical cost. Typically, 2D methods
require eigendecompositions on systems of at least the size
d2, whered is the number of sources, whereas for 1D meth-
ods the size of the systems is approximatelyd. Since the
complexities involved often areO(n3), wheren is the size
of the system, 2D methods can give a considerably higher
computational cost. Moreover, in 1D methods large parts of
the computations can often be performed in parallel, which
is important in real-time applications.
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In this paper we describe a novel method for frequency-
DOA estimation based on ESPRIT, utilizing the separation
approach. It exploits the coupling between the space and
time variables in the wave equation efficiently and the num-
ber of sensors can therefore be kept very low relative to the
number of sources. Moreover, parameter identifiability is
guaranteed and it is not sensitive to several sources having
the same frequency or DOA.

2. SPACE-TIME ARRAY GEOMETRY

We consider a plane problem withd narrow-band sources
present, lying in the far-field of the array. At each snap-
shot the array samples the wavefield inM space-time points
(z1; t1); : : : ; (zM ; tM ) 2 R2 � R. Assuming identical sen-
sors, the complex outputy 2 CM of the array can for each
snapshot be represented on the standard formy = As+ n,
with the steering vectorsa(!k;�k) forming thed columns
ofA and the signal vectors 2 C d , respectively, given by

a(!k;�k) =


k(1; exp(j(�
T
k (z2 � z1))� !k(t2 � t1)); : : :

: : : ; exp(j(�Tk (zM � z1))� !k(tM � t1)))
T ;

s = (�1 exp(j(�
T
1 z1 � !1t1)); : : :

: : : ; �d exp(j(�
T
d z1 � !dt1)))

T ;

andn 2 CM is the noise vector. Here,(!k;�k) 2 (0;1)�
R2 is the frequency-wavenumber pair of thek:th signal,

k is the corresponding (complex) array gain and�k the
(complex) source strength (which is random between snap-
shots). The speed of propagation in the medium isc, hence
k�kk = !k=c. The frequencies taker � d distinct values
and for any given frequency there are at mostq � d� r+1
associated wavenumbers. It is further assumed that the array
has the following multiple invariance structure. There are
four subarrays, indexed bỳ= 0; 1; 2; 3, such that for some
N; p theNp space-time points(z(`)1 ; t

(`)
1 ); : : : ; (z

(`)
Np; t

(`)
Np)

sampled by thè:th subarray are related to the others as

z(1)n = z(0)n ; z(2)n = z(0)n +�; z(3)n = z(2)n ;

t(1)n = t(0)n + �; t(2)n = t(0)n ; t(3)n = t(1)n ; (1)



for some nonzero� 2 R2 ; � 2 (0;1). The most compact
form of this geometry is depicted schematically in fig. 1.
Directions (angles) of arrival�k are defined relative to the
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Figure 1: An example of the space-time geometry in (1).

displacement vector� by cos(�k) = �Tk�=(k�kkk�k),
where we assume that all wavenumbers�k point into one
of the halfplanes separated by a line through�.

The array geometry in (1) is physically realized by at-
taching a tapped delay line ofp taps to each ofN equidis-
tantly positioned sensors. With this space-time geometry,
the phase shift'(m)

k experienced by thek:th signal between

the space-time points(z(0)n ; t
(0)
n ) and(z(m)

n ; t
(m)
n ) for m =

1; 2; 3 is independent ofn and given by

'
(1)
k = �!k�;

'
(2)
k = !k

k�k

c
cos(�k); (2)

'
(3)
k = !k

�k�k
c

cos(�k)� �
�
;

where, in order to avoid ambiguities, we assume that'
(m)
k 2

[��; �) for all k;m. Let y(`);n(`) 2 CNp denote, re-
spectively, the output and noise vector for the`:th subarray.
Then,

y(0) = A(0)s+ n(0); y(m) = A(0)�(m)s+ n(m); (3)

whereA(0) 2 C
Np�d is the matrix of steering vectors for

subarray number 0 and�(m) is the phase factor matrix

�(m) = diag
�
exp(j'

(m)
1 ); : : : ; exp(j'

(m)
d )

�
: (4)

3. PARAMETER IDENTIFIABILITY

If the noise covariance matrix is known andA(0); EssH

both have full rank the (unordered) phase shifts'
(m)
k can

be straightforwardly estimated from array output covariance

data using 1D ESPRIT applied to (3), providedN � d.
Thus, given thatN � d andEssH has full rank the two re-
maining issues that have to be solved before the frequency-
DOA pairs can be successfully estimated are the rank of
A(0) and the question of frequency-DOA ambiguity. How-
ever, both these issues can be readily resolved given the ar-
ray geometry in (1). Let�(m) = ('

(m)
1 ; : : : ; '

(m)
d )T , define

� 2 Rd by � = (�; : : : ; �)T and letf : [0; �]d ! [�1; 1]d

be the function that gives the cosine values of the compo-
nents of a vector. Finally, putg = (k�k=c)f and let�
denote the componentwise product between vectors.

Proposition 1. Suppose that no two distinct components of
�(1);�(2) and�(3) have the same values.1 Then for any
threed� d permutation matricesP(1)

0 ;P
(2)
0 andP(3)

0 there
exist threed� d permutation matricesP(1);P(2) andP(3),
which are unique up to a commond � d row permutation
factorQ, such that the system of equations

8>><
>>:

P(1)P
(1)
0 �(1) = �� � �

P(2)P
(2)
0 �(2) = � � g(�)

P(3)P
(3)
0 �

(3) = � �
�
g(�)� �

�
; (5)

in � 2 (0;1)d;� 2 [0; �]d has a solution. The permutation

matricesP(1);P(2);P(3) are given byP(m) = Q(P
(m)
0 )�1

and the corresponding solution, which is unique, is given by
�̂ = Q!; �̂ = Q�.

The proof is straightforward and omitted. The result
says that given unordered phase shifts (P

(m)
0 �(m)), there

is only one reordering of them that makes the system in
(5) solvable and the corresponding solution gives the cor-
rect frequency-DOA pairs, but possibly in a different order
(as expressed byQ). In other words, the array geometry in
(1) guarantees that no frequency-DOA ambiguity can exist
(generically). As for the rank ofA(0) we can use a result
on Vandermonde matrices. LetV(p;d) � C p�d be the set
of “unit Vandermonde” matrices with thek:th row given by
((v1)

k�1; : : : ; (vd)
k�1) 2 C 1�d , jv1j = � � � = jvdj = 1.

Proposition 2. LetV 2 V(p;d) be a unit Vandermonde ma-
trix with no value in the second row(v1; : : : ; vd) occurring
with larger multiplicity thanq and letD 2 C d�d be a di-
agonal matrix with distinct nonzero entries on the diagonal.
Then, ifp � d andN � q the matrixW 2 CNp�d given by

W =

0
BBB@

V

VD
...

VDN�1

1
CCCA (6)

has full rank (= d).

1This holds with probability one under mild assumptions.



The proof is given in appendix. The result can be di-
rectly applied to the rank problem ofA(0) since this matrix
can be written asA(0) =WG, whereW has the structure
in (6) withD of the form (4) andG is a diagonal nonsingu-
lar matrix.2 It follows that when the array has the geometry
(1) with p � d andN � q the subarray response matrix
A(0) has generically full rank. In other words, whenever the
tapsp attached to each of the sensors in the array is at least
as large as the number of signalsd, and the space pointsN
in each subarray is at least as large as the largest number of
DOAs at a single frequencyq, the subarray response matrix
A(0) can be expected to have full rank.

What remains to be addressed is how to actually perform
the frequency-DOA pairing. By the geometry of the array
the phase-difference vectors satisfy the linear relation

�(1) + �(2) = �(3); (7)

and this suggests the following simple procedure, given the
unordered components of�(m): 1) List the components of
�(m) in an input table and set up an empty output table. 2)
Find indiceskm such that�(1)k1

+ �
(2)
k2

= �
(3)
k3

. 3) Store the

ordered triple(�(1)k1
; �

(2)
k2
; �

(3)
k3

) in the output table and re-

move�(1)k1
; �

(2)
k2
; �

(3)
k3

from the input table. 4) Proceed from
2) until the input table is exhausted. 5) Finally, calculate the
frequency-DOA pairs using (2). In practice, relation (7) is
never exactly fulfilled and one has to complement the pair-
ing procedure with some sort of error criterion and fitting
procedure to determine when a best match resembling (7) is
found (such as a mean square error criterion, which is what
is used in the simulations below).

4. SIMULATIONS

In all examples the signal magnitudesj�kj are constant and
equal, and the phases arg(�k) are random with statistically
independent between signals and snapshots) uniformly dis-
tributed phases. The noise vectors have independent com-
ponents with independent Gaussian real and imaginary parts.
Estimates of the array output correlation matrix are calcu-
lated by standard averaging of outer products of data vectors
and the ‘noise cleaning’ process to obtain the signal output
correlation matrix from the array output correlation matrix
is done by subtraction of a multiple of the identity matrix.
The minimal dimension of the composite array output cor-
relation matrix has always been used (i.e. matrix sizes have
been reduced due to overlapping space-time points wher-
ever possible). The signal-to-noise ratio (SNR) is defined
as SNR= 10 log10(dEjs1j

2=Ejn1j2), wheres1; n1 are the
first component of the signal and noise vectors, respectively.

2Also in the condition thatD in this case has distinct components holds
with probability one under mild assumptions.
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Figure 2: Example A, 200 snapshots, SNR = 20dB.
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Figure 3: Example A, 200 snapshots, SNR = 6dB.

DOAs are measured in degrees, frequencies are given di-
mensionless in multiples of2� and estimates of the phase
differences�(m) are computed by TLS-ESPRIT.

Example A.Three sources present, located in the!; �-
plane at(0:8 � 2�;�55�); (1:7 � 2�; 10�) and(1:3 � 2�; 33�),
respectively. The number of tapsp and sensorsN in each
subarray arep = 5; N = 2, the value of� is 0.25, which is a
quarter of a period at nominal frequency 1, andk�k equals
a quarter of wavelength at nominal frequency. Scatter plots
obtained from 10 runs of 200 samples each are given in
figs 2,3 for SNR=20dB and SNR=6dB, respectively.

Example B.Same setting as exampleA but with one ad-
ditional source at(1:3 � 2�;�30�) (thusq = 2) andp =
6; N = 3. Scatter plots for SNR=20dB and SNR=6dB, re-
spectively, are shown in figs 4,5.

5. CONCLUSIONS

The method presented can be viewed as an algebraic fre-
quency separation of the frequency-DOA estimation prob-
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Figure 4: Example B, 200 snapshots, SNR = 20dB.
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Figure 5: Example B, 200 snapshots, SNR = 6dB.

lem, so that the number of sensors needed is not determined
by the total number of signals but themaximal number of
signals per frequencysince the requirement isN � q. (In
coherent cases spatio-temporal smoothing can be employed).
With maximal space-time overlap, the largest eigensystem
to be solved is of the sizeNp , whereN is of the orderq and
p is of the orderd. For smallq this size is only slightly larger
thand, which often is considerably smaller thand2. In sce-
narios such as passive sonar, whereq is generally small, the
resulting low requirements in terms of sensors and compu-
tations should make the method attractive.

6. APPENDIX

The only case really needed to prove isr < d (i.e. q > 1)
andN � q � 2. Assume without loss of generality that the
elements in(v1; : : : ; vd) are ordered according to increasing
complex argument in[��; �). Then the matrixV can be
writtenV = (V1; : : : ;Vr) where matrixVk consists ofnk
identical columns. By picking one column each from these

matrices we could form a Vandermonde matrix with distinct
generating elements, which has full rank, so rank(V) = r
andR(V) =

Lr

k=1R(Vk). Now, ifWu = 0 we have

0 = Vkuk = VkDkuk = � � � = VkD
N�1
k uk; (8)

for k = 1; : : : ; r, whereDk 2 C nk�nk is the submatrix of
D corresponding toVk in the productVD anduk 2 C nk

is the subvector ofu corresponding toDk in the product
Du. The equalities in (8) can be written compactly as

0 = VkUk(1;d
(1)
k ; : : : ;d

(N�1)
k ); k = 1; : : : ; r; (9)

whereUk 2 C nk�nk is a diagonal matrix with the compo-
nents ofuk along the diagonal andd(�)k 2 C nk is the vector
obtained by stacking the entries on the diagonal ofD�

k on
top of each other. Ifuk 6= 0 we have rank(VkUk) = 1 and
since(1;d(1)k ; : : : ;d

(n�1)
k ) is a (transposed) Vandermonde

matrix with distinct generating elements it has full rank so
(9) impliesnk � 1 � minfN;nkg, i.e.N � nk � 1. On
the other hand,q � nk andN � q soN � nk, which is a
contradiction. Hence,uk = 0 for all k andN (V) = f0g.
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