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ABSTRACT

The estimation of a rigid body 3-D motion parame-
ters from perspective views is typically very sensitive
to noise and also to the presence of outliers in the mea-
surements. In this paper we present a robust 3-D mo-
tion estimation approach based on a previously pro-
posed method using SVD analysis of the measurements
matrix. On the introduction of noise and outliers the
performance of the old method was seen to deteriorate
rapidly. Here the problem is attacked by splitting the
measurement set in smaller subsets and combining the
properties of the resulting submatrices with the prop-
erties of the desired solution vector in order to obtain
our estimate. The method is very robust and it has
been succesfully tested in both arti�cial datasets and
real images with up to 50 % presence of outliers. In
addition, the method is fast and more importantly, the
estimate quality is independent of the percentage of
outliers.

1. INTRODUCTION

The goal of rigid-body motion estimation is to deter-
mine the 3-D rotation and translation parameters of a
rigid object moving relative to a �xed coordinate sys-
tem. The estimates are based on 2-D displacement
information as it appears in an image sequence. Al-
ternatively, the motion parameters can be used in or-
der to estimate the camera motion relative to a �xed,
stationary scene. Generally a 3-D motion estimation
algorithm involves two steps: (a) 2-D motion estima-
tion represented by a displacement vector �eld and (b)
derivation of 3-D movement from the displacement vec-
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tors. Displacement can be represented by a dense vec-
tor �eld [6] or by a sparse vector �eld generated by
point correspondences [7] or line correspondences [9].

There is a wide variety of techniques for estimating
3-D motion parameters from 2-D displacement �elds.
Some of the proposed methods are: to use more than
two frames [2], to use quaternion representation [8],
to assume orthographic projection [1], to use region
alignment [13], to use neural networks [12], to use po-
lar decomposition [8]. However, the accuracy of the
2-D motion �eld is of paramount importance for the
accurate estimation of the 3-D motion parameters, as
the latter process is very sensitive to noise and to the
outliers present in the 2-D measurements.

In our previous work [4] we proposed a 3-D mo-
tion estimation method using point correspondences
between 2 frames. The method is based on the SVD
analysis of a system matrix which yields perfect results
in the ideal case. However, as with all 3-D motion
estimation methods this approach is very sensitive to
measurement errors and to the presence of outliers. In
this paper we present a novel algorithm that makes this
method robust to outliers up to 50%, while the perfor-
mance of the motion estimation is stable.

1.1. SVD-based motion estimation

Let us de�ne a 3-D coordinate system so that the Z-
axis is parallel to the camera optical axis and the X-,
Y -axes coincide with the x-, y-axes of the image plane.
The motion of a point P = [X;Y; Z]T in 3-D space is
described by the following equation

P
0 = [X0; Y 0; Z0]T = RP� t (1)

where the orthogonal matrix R describes the rotation,
and the vector t describes the translation of P.

We assume that the camera geometry is described
by perspective projection with focal length f . We also



assume small enough rotation and translation parame-
ters so that the 2-D displacements [ui; vi] = [x0i�xi; y0i�
yi] for N points i = 1; � � � ; N , can be approximated as

ui =
�ftx + xitz
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Eliminating Zi from (2) and (3) leads to the follow-
ing linear equation [3]

A� = 0 (4)

where the 9-dimensional vector

�T = [tx; ty; tz; txwx; tywy; tzwz;

txwy + tywx; txwz + tzwx; tywz + tzwy] (5)

involves all six free parameters of the problem, i.e. tx,
ty, tz, wx, wy, wz. In the noise-free case the solution
hinges on the SVD analysis of the N �9 system matrix
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since � is associated with the null space of A [3].
In the noisy case the problem can be formulated

as a Total Least Squares problem [4]. Still the SVD
analysis employed for TLS is quite sensitive to noise
and the results obtained are good for noise levels less
than 10%.

2. ROBUST TLS MOTION ESTIMATION

As with most 3-D motion estimation methods the solu-
tion depends heavily on quality of the measurements.
When the output of the feature matching process con-
tains noise and outliers, the TLS method will give very
poor results. In this section, a recursive robust scheme
is introduced to reject outliers from the dataset based
on the residuals information.

First we introduce di�erent weighting on the rows of
A: we callW = diag[w1; w2; :::; wn] a diagonal weight
matrix where wi 2 [0; 1] reects our con�dence on the
i-th measurement {0 means no con�dense, 1 means per-
fect con�dence. Then the linear system to solve is,

WA� = 0 (7)

Our goal is to determine W and �. This is done re-
cursively. First, we start with an estimate ofW which
leads to an estimate of � from Eq. (7). Then the resid-
ual error of our estimate leads to a new weight matrix
W and a new estimate of �, and so on. Since we have
no prior knowledge on the quality of our measurements
we set initially all the weights equal to 1, so W0 = I.
An estimation of �i is made in every iteration using
the TLS algorithm proposed in [4]. The residuals ei of
the estimation are used to calculate the weights for the
next iteration using the equation:

wi =

�
(1� ei)

2 if jeij < 1
0 otherwise

(8)

In order to achieve better results, studentized resid-
uals are used instead of simple residuals [16]. The stu-
dentized residuals are de�ned as:

e0i =
eip

1� hii
(9)

where hii is the diagonal element of matrix H =
WA(WA)+ where the superposed + denotes pseudoin-
verse.

The SVD algorithm needs at least a dataset of nine
points to estimate a solution. The robust algorithm
ends when a number (larger than nine) of weights wk

remain larger than a threshold L. The corresponding
points are used to the TLS estimation. In our experi-
ments, we were searching for 12 - 15 points, while the
threshold L was 0.8 - 0.95.

The above improvement of the original algorithm
is signi�cantly more robust but it can be further im-
proved. The idea is to generate a number of smaller
submatrices Ai by randomly selecting rows from A.
For each submatrix we use the same approach outlined
above. Using more submatrices we increase the proba-
bility that two of them contain su�ciently low percent-
age of outliers so that the algorithmwill yield estimates
�̂ close to the true �.

In order to take advantage of this idea the algorithm
must be able to judge the quality of the estimate �̂i for
each submatrix Ai. We achieve this by making use
of two properties inherent to the data model. First,
let �1; �2; :::; �9, be the singular values of A sorted in
decreasing order. In the noiseless case it can be shown
[3] that �9 = 0. In the noisy case this is not true
but we may assume that the ratio between the smallest
and the largest singular value should remain very small:
�9=�1 � 0. Second, note that good estimates are those
that cluster in a small region around the true �, whereas
bad estimates tend to disperse in <6. Therefore, if
two estimates from two di�erent submatrices lie close
to each other it is more likely that they lie close to



the true value �, than that they lie in some random
neighborhood of <6.

Based on the above discussion our proposed algo-
rithm aims at constructing two submatrices Ai and
Aj such that (a) �9

�1
� 0 for both submatrices, and

(b) the estimates �̂i, �̂j are close to each other. Then

our estimate �̂ is the mean of �̂i and �̂j . The complete
algorithm is presented below.

1. Create Ai.

2. Robust Estimation.

(a) Initialisation W 0 = I.

(b) Estimate �̂ti of W
tAi� = 0 using TLS.

(c) Calculate stundentized residuals e0k fromEqua-
tion (9)

(d) Calculate the new weights wt+1
k using e0k

(e) If twelve di�erent wk are larger than L goto
step 3. L is a prede�ned theshold. Else goto
step (b).

3. If �9
�1

< 10�4 store �i.

4. Goto Step 1 unless there are two estimates �i and

�j such as �̂i
T
; �̂j � 1.

5. �̂ = (�̂i + �̂j)=2

In the next section, the performance of the algorithm
is presented for arti�cial data and real images.

3. RESULTS

3.1. Arti�cial Data

For the arti�cial tests, 100 3D points were generated.
Correspondences of these points were generated using
di�erent motion models. Then a percentage of outliers
was injected in the dataset. The performance of the
TLS method was tested by introducing quantization
error p to the data. The quantization is measured using
the factor s = f

q
, where f is the focal length of the

camera, and q is the size of the square pixel. Typical
values are f = 40mm and q = 0:01mm, so s ' 4000.
Quality of the dataset is calculated using SNR, de�ned
as:

SNR = 10 log
� P

i u
2
i + v2iP

i(�ui � ui)2 + (�vi � vi)2

�
(10)

Our choice of parameters yields realistical, average qual-
ity data (measurement SNR between 19 and 20db).

In Fig. 1 the tested motion model was for t =
[2:9; 1:8;3:3] and w = [3;�2; 0:5] (the angles are mea-
sured in degrees). The quality of the estimation is in-
dependant of the outliers percentage, while computa-
tional cost is propotional to the outliers level . An itera-
tion of the algorithm in a Pentium II 266MHz processor
running Matlab-5 needs between 0.9 and 1.6 seconds.
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Figure 1: The top �gure shows the necessary iterations
until the end of the algorithm. The two bottom �gures
shows the average error percentage in the translation
and the rotation parameters for di�erent outliers levels

3.2. Real Data

The real experiments were made using the train calen-
dar sequence. Feature points of the ball and the train
were found. Motion of these points was estimated us-
ing TLS. Di�erent levels of outliers were injected in the
dataset to test the robust scheme. In Table 1 we show
the mean and the standard deviation of the results for
100 noisy datasets. The rotation parameters w are in
degrees. Robust TLS estimation is very close to the
one of the TLS as shown by the means. The region
of the estimated parameters as seen from the standard
deviation is bigger in the robust estimation, due to the
injected outliers, than in the simple TLS.

3.3. Discussion

The estimation of the proposed method is independent
of the outliers percentage in the input dataset. The mo-
tion estimation quality is stable for data containing up
to 50% outliers. Moreover, the computational cost is
low and proportional to the outliers percentage. In the
case of a dataset infected with more than 50% outliers,
the robust TLS motion estimation will end without so-
lution. Bad estimates are unable to pass the security
thresholds described in section 2.
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Figure 2: The �rst image of the calendar train se-
quence. Tracked features points of the train are in
white and the tracked features points of the ball are
on black

4. CONCLUSION

In this article a novel robust scheme for 3-D motion
estimation is introduced. The method is based on the
SVD analysis of a linear system. The method is tested
in both arti�cial data and real video sequences. The
results show that our method is robust in datasets with
up to 50% of outliers. Our robust scheme is attractive
since the computational cost is propotional to the level
of outliers injected in the datasets, while the estimation
quality is independent of the outliers percentage.
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