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ABSTRACT

We apply Fisher variate analysis to measure the
e�ectiveness of speaker normalization techniques. A
trace criterion, which measures the ratio of the varia-
tions due to di�erent phonemes compared to variations
due to di�erent speakers, serves as a �rst assessment of
a feature set without the need for recognition experi-
ments. By using this measure and by recognition exper-
iments we demonstrate that cepstral mean normaliza-
tion also has a speaker normalization e�ect, in addition
to the well-known channel normalization e�ect. Simi-
larly vocal tract normalization (VTN) is shown to re-
move inter-speaker variability. For VTN we show that
normalization on a per sentence basis performs better
than normalization on a per speaker basis. Recogni-
tion results are given on Wallstreet Journal and Hub-4
databases.

1. INTRODUCTION

A speech recognizer is called robust if it maintains its
good recognition performance even if there is a mis-
match between training and test conditions or if the
acoustical environmental conditions are highly vari-
able. One can try to achieve such robustness either
by adaptation or normalization. In the �rst case a mis-
match is reduced by adapting feature vectors or model
parameters to the target environment. With normal-
ization, on the other hand, the goal is to compute fea-
tures or model parameters that are insensitive to un-
desired variations of the speech signal e.g. due to dif-
ferent channels or speakers. Normalization techniques
are typically carried out in the front end of the rec-
ognizer. Examples include speech enhancement, such
as spectral subtraction, robust feature extraction tech-
niques, e.g. PLP [5], vocal tract normalization [7, 8]
and various feature transformations, e.g. RASTA [6].
In this paper we present a statistical measure for the

e�ectiveness of such speaker normalization techniques
in the feature space. Applying Fisher Discriminant

Analysis [3], we compute the ratio of feature variability
due to di�erent phonemes and due to di�erent speak-
ers. This tool allows an early assessment of a feature
set without running time consuming recognition exper-
iments.
By using this measure we can show that cepstral

mean normalization also reduces inter-speaker vari-
ability, in addition to the channel normalization ef-
fect. Also, vocal tract normalization is shown to re-
duce inter-speaker variability. Since the measure is
quite general, it can also be modi�ed to measure other
sources of variations.

2. A MEASURE OF INTER-SPEAKER

VARIABILITY

Let �r;c denote a D-dimensional mean feature vector:

�r;c =
1

Nr;c

X
x(t)!r;ph:c

x(t)

The sum is over all Nr;c cepstral feature vectors
x(t), which are from speaker r; r 2 f1; : : : ; Rg and
which have been assigned by a time alignment to
phoneme c; c 2 f1; : : : ; Cg. There is a total of N =PC

c=1

P
frjr!ph:cg 1 =

PC

c=1Nc such mean vectors.

frjr ! ph:cg denotes the set of speakers that have spo-
ken phoneme c. There are Nc such speakers. (For rea-
sonable amounts of data per speaker, there is of course
Nc = R for all c, i.e. every speaker has spoken every
phoneme.)
Now Fisher variate analysis [3] is applied, where we

assume that a phoneme constitutes a class. The class-
speci�c mean vectors are then

mc =
1

Nc

X
frjr!ph:cg

�r;c; c = 1; : : : ; C;

where the summation is over all speakers r who have
spoken phoneme c. The total mean is

m =
1

N

CX
c=1

X
frjr!ph:cg

�r;c =
1

N

CX
c=1

Ncmc



We now compute between-class and average within-
class sample covariance matrices:

SB =

CX
c=1

Nc

N
(mc �m)(mc �m)T

SW =
1

N

CX
c=1

X
frjr!ph:cg

(�r;c �mc)(�r;c �mc)
T ;

where AT denotes the transpose of a matrix A.
One would like to have feature vectors such that all

vectors belonging to the same phoneme are close to-
gether in feature space, irrespective of the speaker, and
that they are well separated from the feature vectors
of the other phonemes.
An appropriate measure of this property is the deter-

minant or the trace of S�1W SB . The trace, for example,
is the sum of the eigenvalues �i of S

�1
W SB and hence

the sum of the variances in the principal directions. It
can be interpreted as the radius of the scattering vol-
ume. In the experiments reported in this paper we
computed

Pd

i=1 �i for d = 1; : : : ; D, i.e. the trace in a
d-dimensional subspace of the feature space, spanned
by the d principal discriminants.
The above class separability measure can now be

used to compare di�erent feature sets. It may serve
as a �rst assessment of the quality of feature sets with-
out the need for recognition experiments. Indeed we
will see in the next sections that the higher the class
separability measure the lower is the recognition error
rate.
Note that we have derived a measure of inter-speaker

variability within phonemes. We could as well have
used hidden Markov Model states as classes, rather
than phonemes. Further one can study also other
sources of undesired variability, e.g. the variability
of phonemes between di�erent databases or channels
by database- (channel-) speci�c rather than speaker-
speci�c mean vectors.

3. CEPSTRAL MEAN AND VARIANCE

NORMALIZATION

Cepstral mean and variance normalization are well-
known techniques to improve the insensitivity of the
feature vector to channel distortions.
The mean and variance normalized feature yd(t) is

computed as follows:

yd(t) =
xd(t)� �xd(t)

�̂d(t)
; d = 1; � � � ; D

where d is the cepstral index, D being the number of
(static) features. �xd(t) is an estimate of the mean and
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Figure 1: Trace criterion versus vector dimension on
WSJ0 database (42 male and 42 female speakers) show-
ing the e�ect of cepstral mean and variance normaliza-
tion.

�̂d(t) is an estimate of the standard deviation of the
input cepstral feature xd(t). Both mean and variance
are computed over a block of frames, in our case over
the duration of one utterance.

Cepstral mean normalization (CMN) introduces a
spectral null at d.c. in the socalled modulation spec-
trum of speech [6]. It is well known that such an oper-
ation is able to remove an unknown constant channel
transfer function. This holds also for causal, recursive
forms of subband �ltering, such as RASTA [6].

However, it has also been observed that CMN can
improve recognition performance even if there are no
unknown channel transfer functions. Chen [2] added a
bias term to the cepstral mean vectors and scaled the
cepstral variance to compensate for speaking style vari-
ations. In [4] we reported 20% relative improvement of
the string error rate on the TI-Digits recognition task
due to CMN.

Figures 1 and 2 verify that CMN indeed suppresses
speaker characteristics: they show the value of the trace
criterion, on the WSJ0 (Wall Street Journal) database,
Fig. 1 for the whole 42 male and 42 female database,
and Fig. 2 for the 42 male only subdatabase. One can
see that the trace criterion is much larger for feature
vectors after CMN compared to feature vectors with-
out CMN. These results are an indirect evidence for the
conjecture that low modulation frequencies, which are
suppressed by CMN, indeed contain speaker-speci�c
characteristics. For tasks where the speaker identity
should not be lost, e.g. speaker identi�cation or speaker
clustering, these frequencies should therefore not be
suppressed.
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Figure 2: Trace criterion versus vector dimension on
WSJ0 database (42 male speakers) showing the e�ect
of cepstral mean and variance normalization.

Comparing the two �gures one observes that inter-
speaker variability is slightly larger on the 42m+42f
database compared to the 42m male only subdatabase,
which is in line with our expectations.
We also ran recognition experiments on the 5k de-

velopment and evaluation test sets of Nov. 92 and 93
and noticed that CMN delivered a 25% relative error
rate reduction, although these databases hardly con-
tain any variation of the channel transfer function. All
following investigations were therefore done with CMN
switched on.

4. VOCAL TRACT NORMALIZATION

Vocal tract normalization (VTN) tries to reduce inter-
speaker variability by a speaker-speci�c frequency
warping [7, 8]. Di�erences in vocal tract length are
compensated for by a linear warping factor applied
to the mel-frequency scale. We implemented the fre-
quency warping by shifting the center frequencies of
the mel-spaced �lter bank. Let k�fmel; k = 1; : : : ;K,
denote the K center frequencies in mel. Then the cen-
ter frequencies in Hz for a warping factor of � are:

f�Hz(k�fmel) =
1

�
700
�
10

k�fmel
2595 � 1

�

The cepstral feature vectors are then computed from
the accordingly arranged �lter bank.
We employed VTN both in training and recogni-

tion. In training, the warping factor is estimated by
computing the likelihood of the training data for fea-
ture sets obtained with di�erent warping factors using
HMM model sets with a low acoustic resolution. In
recognition, we used a preliminary transcription of the
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Figure 3: Trace criterion vs vector dimension on WSJ0
database (42 male and 42 female speakers); comparison
of unwarped and warped features (VTN).

test sentence obtained from a recognition based on un-
warped features to estimate the warping factor, similar
to [7]. For more details on the VTN setup, see [9].
Figures 3 and 4 show that the warped features ex-

hibit lower inter-speaker variability, as measured by the
trace criterion on the WSJ0 training database. Again,
the gender-speci�c database (42 male speakers, Fig. 4)
has less inter-speaker variability than the unspeci�c
database (42 male and 42 female speakers, Fig. 3).
The index "per speaker" denotes that a single warp-
ing factor is determined on all utterances of a training
speaker.
Better results, however, were obtained when the

warping factor was determined on a per sentence ba-
sis: for each sentence a separate warping factor is esti-
mated, rather than a single warping factor for all sen-
tences of a speaker. Information on which sentences
stem from the same speaker is no longer required. Still
the trace criterion is slightly larger. As shown in Table
1 the error rates achieved are also better.

Table 1: Word error rate (WER) and % deletions and
insertions on WSJ 5k 92/93 dev/eval test sets for dif-
ferent VTN setups. 20 Male speakers only, bigram lm.

VTN setup del-ins WER
[%] [%]

no VTN 2.1-0.9 9.9
� per speaker 2.1-0.9 9.5
� per sentence 2.0-0.8 9.3

Tables 2 and 3 summarize recognition results with
VTN on the Hub-4 1996 development and evaluation
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Figure 4: Trace criterion vs vector dimension on WSJ0
database (42 male speakers); comparison of unwarped
and warped features (VTN).

test sets. In all cases we estimated the warping factor
on a per segment basis (in Hub-4, the equivalent of a
sentence). The achieved error rate reductions due to
VTN were however considerably smaller, compared to
WSJ.

Table 2: Word error rates in % on Hub-4'96 dev. set
(male speakers only) for di�erent vtn scenarios. Bi-
gram lm, within-word models, no adaptation in recog-
nition, partitioned evaluation.

VTN setup Focus condition
overall F0 F1 F2

no VTN 36.5 17.1 36.5 45.1
VTN in

trn and rec 35.3 16.4 35.3 42.4

Focus condition
F3 F4 F5 FX

no VTN 33.7 29.3 36.6 61.2
VTN in

trn and rec 30.5 29.7 34.1 62.4

While the results on the development test set were
obtained in a socalled partitioned evaluation, the re-
sults on the evaluation test set were computed in an
unpartitioned evaluation, i.e. the segment boundaries
had been derived automatically (see [1] for a de�nition
of the terms).

5. CONCLUSIONS

We have applied Fisher Discriminant Analysis to de-
rive a measure of inter-speaker variability which \cor-

Table 3: Word error rates in % on Hub-4 eval'96 test
set for di�erent VTN scenarios. Bigram lm, within-
word models, unpartitioned evaluation, NIST'96 scor-
ing rules.

VTN Over- �le1 �le2 �le3 �le4
setup all

no VTN 36.3 37.1 35.3 40.4 32.4
VTN in

trn and rec 35.4 36.2 34.1 39.4 32.2

relates" well with the error rate. It allows a compar-
ison of di�erent feature sets at an early stage of the
system development, i.e. without running extensive
recognition experiments. Using this tool we have shown
that cepstral mean normalization reduces inter-speaker
variability, in addition to eliminating unknown channel
transfer functions. This statistical result supports the
conjecture from psychoacoustics that low modulation
frequencies contain speaker-speci�c cues. Further, we
have demonstrated that vocal tract normalization re-
duces inter-speaker variability and that a normalization
on a per sentence basis performs better than a normal-
ization on a per speaker basis. The tool we have used
is very general and can also be modi�ed to measure
other sources of variability, e.g. variability due to dif-
ferent channels.
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