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ABSTRACT
A new theory that qualitatively and quantitatively describes
shape is presented. Signals are treated as ordered sets and shape
as a property of the order. Measures of shape are derived starting
from simple two element sets. It is shown that the degree of
asymmetry or relative contrast at various scales is a sufficient
descriptor of shape. The shape of a signal is a composite of the
shape of all possible ordered subsets. A distinction is drawn
between statistical and shape measures within a unified
theoretical framework which may make it possible to compare
diverse pattern recognition approaches in terms of robustness and
discrimination power.

1. INTRODUCTION
There are a multitude of approaches to pattern recognition in one
and higher dimension – statistical, structural or syntactic, and
connectionist or artificial neural methods. There are numerous
feature extraction methods to extract shape. Shape is extracted
from contours [1], symmetry [2], shading [3], moments [4],
Fourier [5] and higher order spectral representations [6,7]. One
finds reference to global and local shape in the literature without
any formal definition. Multiresolution techniques, such as scale-
space [8] and wavelet transforms [9,10], attempt to capture shape
information at various degrees of localisation. In the absence of a
formal definition and theoretical framework, it is difficult to
compare diverse methods effectively. Most comparisons are
based on classification accuracies obtained on common data -
they reveal little about the discriminating power and robustness
of the techniques in general. An attempt at formally defining
shape and placing it in a mathematical framework that may
permit systematic comparisons is presented here.

1.1 Axioms Corollaries and Definitions

Axiom A1: A null set φ  has no shape.

Axiom A2: A set of one element has one shape regardless of the
value of the element. It can have many possible values. A value
is an intrinsic property of a single element, such as a number, or
colour, or quality.
Axiom A3: An ordered set of two or more elements has more
than one shape.
Definition D1: Shape is a property of the order of an ordered set
and all its possible ordered subsets. For example, the shape of A
= {1,2,3} is a property of {1,2,3}, {1,2}, {1,3}, {2,3}, {1}, {2},

{3} and φ .

Corollary D1.1: If the order of values in a set is changed, the
shape changes. For example, A = {1,2,3} and B = {2,3,1} have

different shapes. However, they may have similar shaped subsets
such as {2,3}.
Corollary D1.2: A value is itself an element of a set of possible
values called the range. The range may or may not have an order
within it. For example, a set of integers is ordered, a set of
colours is not ordered, a set of colours represented by numbers
has an order imposed on its elements.
Corollary D1.3: A set of constants has only one shape because
all orderings of the elements are identical.
A measure of shape must measure “changes” in the intrinsic
properties or values of elements when the order of elements is
changed in a prescribed manner. Without loss of generality this
change in order can be chosen as the reversal because any other
change can be specified in terms of reversals of the order of
elements in subsets of the set. In order to measure the “change”
operations must be defined on the values of the elements. For the
remainder of the discussion, numerical values will be assumed.
The concepts described can be extended to other values with
appropriate definitions of operations on these values.

1.2 Shape of a 2-element Set

Definition D2: For a two-element set )}2(),1({ xx  of real

numbers, that are elements of a group with addition and
multiplication as defined operations, define the shape to be
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This measure is consistent with Weber’s law for perception of
contrast that states that the smallest perceptible change in
brightness is proportional to the background brightness.
Henceforth, the value of an element will be referred to as the
brightness or intensity. An order from the “darkest” to the
“brightest” is assumed on these values, represented by real
numbers.
The “zero” of values may be taken as the “darkest” or least
perceptible or imperceptible value in describing absolute
perception by an ideal sensor. However, shape is a relative
property and describes a change in value. These changes must be
described with respect to a reference for perception. This
reference could be the background brightness or adaptation level
of the sensor. For example, a pattern on grey paper is visible if it
is darker or lighter than the paper. The temperature of an object
can be perceived by touch if it is colder or warmer than the
temperature of the human body.
Corollary D2.1: A two-element set of real numbers has an
infinite number of possible shapes. They belong to three major
categories - left asymmetric if the shape is negative, right
asymmetric if the shape is positive, and symmetric if the shape is
zero.



Corollary D2.2: The shape of a two-element set is unchanged by
multiplication of the element values by a constant. This property
is desirable in an extension of the definition of shape to larger
ordered sets.
Corollary D2.3: The shape of a set of zeroes is indeterminate.
This is consistent with the interpretation of zero as an
imperceptible value. There is no shape for a completely
imperceptible ordered set.
Corollary D2.4: Shape is unchanged by a negation of the
intensities of all elements. A negative value is interpreted as a
perception of the opposite quality - that is, if positive values are
brighter than the reference, negative values are darker. An
increase in brightness is equivalent to a decrease in darkness in
the same order and vice versa, provided that the relative increase
or decrease in each case is identical.
Corollary D2.5: A reversal of the order of elements of a two
element set of real numbers changes its shape unless the elements
are identical and the shape is zero.

1.3 Extension to Larger Sets

This definition of shape for a two element set of real numbers
could suffice for larger sets because an ordered set of N elements

can be decomposed uniquely into 2CN  ordered subsets of two

elements. A change in the values or the order of the set will
involve a change in one or more of these two-element subsets.
However, such an extended definition of shape for larger sets
will be inadequate because it does not capture “global”
perception of shape that includes phenomena such as foveation
or focussing. It only captures shape as a union of local shape
information each of that assumes the same reference level. The
measure of shape in equation 1 is adaptive to the local brightness
because it is a ratio, however, the zero of shape is still the same
for every subset. In practice, a large ordered set is often
perceived “globally” over an extended portion of more than two
elements. Such perception is usually a weighted average with
reduced contributions from elements that are further away from a
point called the focus or foveation point.  Because the shape of
an arbitrary ordered set is defined as the union of the shapes of
all its possible ordered subsets, the focus point in any subset can
be chosen, without loss of generality, as the centre or that point
about which there are an equal number of elements both below
and above in the given order of elements. For a subset with odd
number of elements, this point will correspond to one of the
elements. For a subset with an even number of elements the focus
lies between two elements.
The extended definition of shape for a larger set should measure
the “change” when the order of elements is reversed about the
foveation point. It will then be zero for symmetric sets - not just
sets of constants. This does not imply that different symmetric
sets cannot be perceived as different in shape - they will have
different shapes in other subsets. The extended definition of
shape is thus a measure of relative asymmetry. The shapes of all
ordered sets can be characterised by measuring relative
asymmetry of all possible ordered subsets. For a two-element set
the asymmetry is measured as a difference of the values. For a
larger set, the asymmetry can be measured as a difference
between the weighted sums of values on either side of the
foveation point or centre. The optimal choice of weights depends
on a number of criteria discussed below.

2. ORDER SENSITIVITY THEOREMS

Theorem T1: If },....,2,1),({ Niiw =  are weights and
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)()(  is different for every pair-wise

exchange of )(mx  and )(nx  where )()( nxmx ≠  provided

every  pair of weights )(mw  and )(nw  is unique.

Proof: Consider the reversal of elements with indices m and n.
The weighted sum will not change if:

)()()()()()()()( mxnwnxmwnxnwmxmw +≠+       or

0)]()()[()]()()[( ≠−−− nxmxnwnxmxmw             or

     0)]()()][()([ ≠−− nxmxnwmw          or

                     )()( nwmw ≠   given )()( nxmx ≠ .

Any permutation of elements of an ordered set can be considered
as a series of pair-wise reversals of elements. If uniqueness to a
combination of two pair-wise reversals is desired, then the
differences of weights )]()([ nwmw − must also be unique for

every possible m and n. Carrying the argument forward to
permutations involving three reversals and so on, the following
theorem is proved.
Theorem T2: If },....,2,1),({ Niiw =  are weights and

},....,2,1),({ Niix =  are elements of an ordered set, the
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)()(  is unique for every unique

permutation provided every  pair of weights )(mw  and )(nw  is

unique and their differences up to order N-1 are unique.
Corollary T1.1: A weighted sum of an ordered set of elements
using a monotonically increasing or monotonically decreasing set
of weights is unique to the reversal of order of pairs of elements
in the set.
Definition D3: An ordered set can be represented by indices with
the foveation point having index 0, and other elements having
index equal to the integer value of its position to the right
(positive) or left (negative) of the foveation point. Such a set will
be referred to as a “centred” set.
Corollary T1.2: A weighted combination of the elements of a
centred set with the weights equal to the corresponding index is
unique to the reversal of order of pairs of elements. Such a
weighted sum is in fact the first moment.
Corollary T2.1: A weighted combination of the elements of a set
indexed from 0 to N-1 with the weights proportional to the N-th
power of the corresponding index is unique to any permutation
of the N-element ordered set. Such a weighted sum is in fact the
N-th order moment.
Corollary T2.2: A weighted combination of the elements of a
centred set indexed with the centre as 0 and with the weights
proportional to the N-th power of the corresponding index is not
unique to any permutation of the N-element ordered set. Such a
weighted sum is in fact the N-th order central moment.  This is

owing to the non-uniqueness of Mi 2 , which assumes the same
value for i± .



Thus, central moments of even order lose uniqueness to mirror
image inputs. Central moments of odd order are zero-valued for
inputs that are symmetric about the centre. A central moment of
any given order is therefore not unique to all permutations of a
given input.

Which other weight sequences satisfy the condition of sensitivity
to permutations of the input? Do they have to be monotonically
increasing or decreasing? Are they sensitive to any change in the
input?
It can be shown that weights that are inversely proportional to the
index also satisfy a limited order sensitivity property.  Such a
weighted sum, in fact, corresponds to computation of a Hilbert
transform coefficient in a discrete domain. For a continuous-time
function, the Hilbert transform operation is a convolution with
the function t/1 (except for a scalar constant π/1 ). All

derivatives of t/1  exist except at t = 0. At any given t = t0 , the

Hilbert transform coefficient is an integral that measures
asymmetry about this point and retains sensitivity to the order of
values in the input.  The Hilbert transform suffers from the same
problem as central moments because even order differences (or
derivatives) are not unique.
Weights that decay with increasing distance from the foveation
point are of particular interest because they yield a bounded
measure for bounded sets (stability). They are also consistent
with the phenomenon of decreasing attention to detail or loss of
sensitivity away from the point of focus.
From theorem T1 it can be seen that even for a two-element set,
any weighted combination of the elements could have been used
as a measure of shape, if sensitivity to the order of elements was
the only desirable criterion. It must be noted, however, that the
definition in D1 satisfies additional desirable criteria such as the
shape of a constant set being zero even when the constant itself is
not zero and conformity to Weber’s law of perception. The
definition in D1 can be considered a weighted sum given by

)2()2()1()1(2 xwxw +=ψ            (2)
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The second constraint implies that the weights are inversely
proportional to the average brightness of elements in the set. The
average brightness is itself not a measure of shape according to
the above development because its weighting of the elements is
constant. At this point, a name can be given to such a measure - it
will be referred to as a “statistical measure” because it is
completely independent of the order of the elements.

3. STATISTICAL AND SHAPE
MEASURES

Definition D4: A statistical measure of an ordered set of real
numbers is a scalar function or property of the set that is
completely independent of the order of elements in the set.

For example, mean, median and mode are all values that describe
a set of numbers but they are independent of the order. The
histogram that describes the frequency of occurrence of values in
the elements of the set is another example of a statistical
measure. The histogram is a vector from which several scalar
statistical measures can be derived.
Definition D5: A statistical-shape “hybrid” measure of an
ordered set of real numbers is a scalar function or property which
is neither unique to the order of the elements in the set nor
completely independent of the order, that is, neither a shape
measure nor a statistical measure.
The first order moment of a set of elements is not, in general, a
complete shape measure because the differences of weights are
not unique.
Definition D6: A complete shape measure of an ordered set of
real numbers is a scalar function or property which is unique to
the order of the elements in the set.
From the above discussion, it follows that the N-th order moment
is a complete shape measure of an ordered set. N-th order central
moments of centred sets are not complete shape measures,
neither is the Hilbert transform coefficient.
In general, statistical measures can provide robustness at the
expense of uniqueness, while shape measures provide uniqueness
to the order of elements.
The constraints on the weights of a shape measure for a two-
element set (equations 3) can be generalized for an extended
definition to larger sets. Then for a set of N = 2M (or 2M+1)
elements,
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If the point of foveation is an element of the set (odd number of
elements) w(0) is chosen as 0 and the corresponding element will
not contribute to shape.
The second constraint is satisfied easily by dividing all weights
by the average brightness. There are several possible choices that
satisfy the first constraint. If the indices are

},1,....,1,1,....,1,{ MMMMi −−+−−=  then the possible
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By power series expansion such monotonically decreasing
functions can be represented in terms involving powers of i/1 .
All these functions are measures of asymmetry about the centre.
Any of them are acceptable as a measure of shape in the subset.
Adopting the second choice, of weights inversely proportional to
the order index from the centre,
Definition D7: For an N-element set of real numbers

},,....,,,,....,,{ 11011 MMMM xxxxxxx −−+−−  or

},,....,,,....,,{ 1111 MMMM xxxxxx −−+−−  the partial shape it

contributes as a subset is measured by:
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4. FEATURES AND CLASSIFICATION

Definitions D1 and D7 can be used to represent the shape of an
arbitrary one-dimensional ordered set using a set of scalar shape
measures, one for each ordered subset. The complete
computation of this set of measures has exponential complexity

because there are N2  such subsets. It will not in general be of
much use in classification or compression; in fact, it expands a
set of N real numbers into a larger set of real numbers.
Procedures and criteria to prune and combine these measures into
lower dimensional representations are required to introduce
efficiency as well as robustness. Ideally, a scalar whose value is
unique to every different shape and has a high variance between
desirable classes of shapes and a low variance between
acceptable degradations of a given shape is the preferred
representation or “feature”. Often pattern recognition methods
have to be satisfied with vectors of features that are then used by
a classifier for discriminating the classes of shapes. Classification
utilizes shape and statistical information in the “feature” space.

4.1 Multi-dimensional Signals

For two-dimensional images or multi-dimensional signals, the
above discussion and definitions hold with the order extended
from one-dimension to multiple dimensions and signals being
viewed as sets with multiple indices. Since the definition of
shape involves contribution from all possible subsets,
theoretically, finite extent multi-dimensional sets can be treated
as one-dimensional sets after collapsing the dimensions into one
in a prescribed manner. For example, an image can be collapsed
into a vector by concatenating consecutive rows.

EXAMPLE:

We illustrate how the theory may be applied by a 2D example.
Consider the four bi-level patterns shown below.

1 0 1 0 0 1 0 1 0 1 1 1 0 1 0 0
1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0
1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

             (a)      (b)                     (c)                  (d)

Figure 1.  Bi-level patterns.

In order to apply the theory to multidimensional signals we must
convert them to one-dimensional ordered sets according to some
prescribed manner. Let us choose this as concatenation of rows
starting from the top left corner, yielding vectors x(n) from
inputs. We will examine the “shape” content and discriminability
of these patterns limited to the second order description given by
ordered pairs. Ordering these two-element subsets [x(k) x(l)]
with k less than or equal to l, there are 128 subsets from each. Of
these, exactly 55 have non-zero shape for each pattern.

Shape (a) Shape (b) Shape (c) Shape (d)

2ψ  = 1 35 20 14 26

2ψ  = -1 20 35 41 29

As seen from the table, in terms of such a measure, shape (a) is
furthest from its complement shape (b), and shape (b) lies
between shapes (c) and (d).  It must be noted that the description
above is only second order. Since our system is based on
asymmetry, transposing the matrices has the same effect as
complementing – it changes the symmetry in the second order
subsets.

5. CONCLUSION
In this paper, a new approach is presented to define shape and
measures of shape. An attempt is made to place one-dimensional
and multi-dimensional pattern recognition as well as different
approaches to extracting features dependent on shape and robust
to noise and transformations on the same unified analytical
framework. Further work in this direction will enable meaningful
comparisons of different pattern recognition techniques in terms
of discriminability and robustness.
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