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ABSTRACT

This paper considers the problem of estimating the parame-
tersof chirp signalswith randomly time-varying amplitude.
Two methods for solving this problem are presented. First,
a nonlinear least-squares approach (NLS) is proposed. It is
shown that by minimizing the NLS criterion with respect to
all samples of the time-varying amplitude, the problem re-
duces to atwo-dimensional maximization problem. A theo-
retical analysisof theNLS estimator is presented and an ex-
pression for its asymptotic variance is derived. It is shown
that theNL S estimator hasavariance very closetothe Cramér-
Rao Bound. The second approach combines the principles
behind the High-Order Ambiguity Function (HAF) and the
NLS approach. It provides a computationally simpler but
suboptimum estimator. A statistical analysis of this estima-
tor isaso carried out. Numerical examples attest to theva
lidity of the theoretical analysisand establish a comparison
between the two proposed methods.

1. INTRODUCTION AND OUTLINE

Retrievingthe parameters of chirp signalsembedded in mul-
tiplicativeand additive noiseisatopic of considerableinter-
est in many practical situations. Consider the radar applica-
tion where atarget isilluminated. Then, the transmitted sig-
nal will beaffected by two different phenomena. First, dueto
the distance and relative motion between the target and the
receiver, the phase of the signa will be shifted. This phase
shift can be adequately modeled as ¢(t) = ag + a1t + ast?
provided that themotioniscontinuousand differentiable. The
parameters a; and a- are either related to speed and accel-
eration, or range and speed, depending on what the radar is
intended for and on the kind of waveforms transmitted [1].
Additionally, the signal will experience amplitudedistortion
caused either by target fluctuation or scattering of themedium
(eg., fading). Thismanifestsitself asarandomtime-varying
amplitude «(¢) which can be viewed as an unwanted phe-
nomenom (hence the terminol ogy multiplicative noise often
usedintheliterature). The cases of constant amplitudechirp
signal sand exponential signal swithtime-varying amplitude
have been addressed thoroughly (see [2, 3] and references

therein). In contrast, the literature is more scarse regarding
chirpsignalswithrandom, time-varyingamplitudes. The case
of deterministicamplitude«(t) istrested in [4]-[5] wheress
[6]-[7] consider random amplitudes. Cramér-Rao Bounds
are derived in [6] when «(2) is a stationary process whose
covariance matrix depends on afinite dimensiona parame-
ter vector. A broader class of random amplitudesis consid-
ered in [7] where cyclostationary solutions are investigated
to solvethe problem. More precisaly, for achirp signd, use
of the cyclic 2nd-order moment is advocated.

Two approaches are presented in this paper. Thefirst re-
lies on Nonlinear L east-Squares estimation of the chirp pa-
rameters. Since this approach may be computationaly in-
tensive for certain applications, a simpler approach is pro-
posed which borrows ideas from the HAF and the NLS es-
timator.

2. NLSESTIMATION

The signa to be dealt with herein is given by

y(t) = a()e ltorn o) fng) 4=0,0 N =1
= 5(t) + n(t)

where () is assumed to be areal-va ued Gaussian station-
ary process and n(t) is awhite complex circular Gaussian
process with zero mean and variance o2, i.e., E{n(¢)n(t +
V=0, E{n*(t)n(t +7)} = 0?4(7). Additionaly, n(t) is
assumed to be independent of «(¢). The NLS gpproach con-
sists of estimating the parameters ag, a1, a-, aswell as al
samples {oz(t)}tzoymyN_l of the time-varying amplitude
by minimizing the following criterion:

| Nl ' 2
J(a,a) = ¥ Z ‘y(t) — oz(t)el(au‘l'al +azt?) Q)
t=0

wherea = [(0), -, (N — 1)]" and a = [ap, a1, as]” .
In the next proposition, we show how estimates of o and a
can be obtained.



Proposition 1. Thevectors a and a which minimize(1) are
given by
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ai,d; = arg gne(mlx—
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G = —angle{z y —22 (ait+ast )} (3)

a(t) = Re {y 1) x e~ i(@ot+art+int )} @

Proof : see[9].

Notethat a“true” NLS estimator would proceed by min-
imizing (1) with respect to a and the parameter vector A on
which «(t) would depend. The approach we propose tacitly
considersthat the realization of «(t) isfrozen and has to be
estimated. Thisinturn decreases the computational complex-
ity sinceonly a2D maximization problem needsto be solved
when minimizing with respect to o and not wrt A. Addition-
ally, it should be emphasized that the present approach does
not rely on any assumed structure for the amplitude; hence,
it has the desirable property of being applicable to a wide
class of signals.

Remark 1. Intheconstant amplitudecase (i.e,, a(t) = «ap),
the estimate of ¢ would be an average, e.g.,

G0 = & |30 y(t) x e~ i@+ | In the time-varying
scenario, each sample of «(t) is estimated (see (4)) which
leads to the squaring of the data.

Remark 2. The estimates of a as given by (2) and (3) are

equivalent tothosethat woul d have been obtai ned by solving
the following minimization problem

2
{ A} = argmln Z ‘y _ Aei2(aotarttast®)

(5)

Moreover, it can be readily verified that the estimate A of
the “signa arnplitudé as obtained from (5) is a consistent

estimate of 7., (0) = E {a?(t)}. Hence, the NLS estimator
“views’ thesugnal as
Y1) = ra () F e LA (8)

We now analyze the performance of the estimates of a;
and a» asgivenby (2) and derivean expression for their vari-
ances.

Proposition 2. Theasymptoticvariancesof a; anda- in(2)
are given by
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N3SNR
90 1
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var (ay) ~

var (az) ~

where SN R = r,(0) /0.

Proof : see[9].

It should be stressed that although «(¢) may be colored,
the variance expression (7) involves only the zero-lag term
r«(0). Additonaly, similar to the constant amplitude case,
thevariances of @, and @ are seen to be of orders 1/N3 and
1/N5, respectively. Finally, it is of interest to compare the
above expressions with the Cramér-Rao Bounds (CRB) de-
rived in [6]. In the high SNR case, the CRB’s are given by
(see[6, eq. (89)])

CRB(a1) ~ %537 CRB(a) ~2t=+ (8
Comparing (7) with(8), itisseenthat the NL Sestimator pro-

vides nearly efficient estimates.

3. HAF-BASED APPROACH

Since the NLS estimator involves a 2D maximization, we
consider asimpler approach. Specifically, we would liketo
apply the original HAF based approach of Peleg and Porat.
Consider first the noiseless case. It isreadily verified that

s*(t)s(t + 1)

where T issome positiveinteger (7 > 0). Hence, s5 (¢;7) =
s*(t)s(t+ ) isan exponentia signal with time-varyingam-
plitudes (¢; 7) = a(t)a(t+ 7). Inthenoisy case, we obtain

y2 (1) =y (Ot +7)
=s"t)st+ 1)+ n2(t;7) (20)

— a(t)a(t 4 T)eialTeia272ei2a2tT (9)

wherens (¢, 7) = s*(t)n(t+7)+n* (t)s(t+7)+n" ({t)n(t+
T) isazero-mean (since 7 > 0) process with covariance

E{ni(t;m)na(t+7;7)} = [QUzra(O) + 0'4] J(r) (11)

Therefore, y, (¢; 7) isan exponentid signal with randomtime-
varyingamplitude 3 (¢; 7) = «(t)a(t + ) in complex zero-
mean white noise n, (¢; 7). However, the distributions of
3 (t; ) and n2 (¢; ) are quite complicated to obtain; hence
an optima (e.g., Maximum Likelihood) approach is to be
forgotten. Thus, wearenaturally ledto usingaNL Sapproach
with y2 (¢; 7) asthedata. The stepsinvolved in the estima
tion of a; and a, are now described.

Step 1 For agivenr, computeys (¢;7) = y* (H)y(t+7).
Then estimate a, as

1 N—l ' 5
@2 = g puin 7 ) \yz (1) = B (1) 149
1
= Q—arg max t 7_ —ZZwt (12)




which follows from Proposition 1. Note that a» can be ob-
tained viathe Fast Fourier Transform of 3 (¢; 7).

Step 2 Once @ isavailable demodulate y () to obtain

(1)

y (t) x o idat?
o

(1) et 471 (1) (13)
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where 7 (¢) combines the estimation errorsin @, and the ef-
fect of additivenoise. a; isthusobtained as

| Nl 5
ay = in — — i(wtty)
al_argarfl;%N; z(t)—a(t)e ‘
N-1
= argmax — Z 22 () em 2t (14)
t=0

We note that the previous approach is simpler than the
NLS approach as it only involves lag products and FFT’s.
In the next section, we will examine the trade-offs between
statistical accuracy of the NLS estimator and computational
simplicity of the HAF estimator.

Remark 3. It can bereadily verified that the estimate @, in

(12) implicitly relieson a4th-order transformation of thedata
sinced, = %argmaxw % ‘ N-1

In fact, the HAF-based scheme amounts to using the “clas-
sica” HAF-estimator (i.e., theestimator originally designed

for constant amplitudechirps) but withy(¢) replaced by y?(¢).

Remark 4. A dtatistical analysisof theHAF-based estimate
as in(12) iscarried out in[8]. Assumingthat N — 7 > 1,
thelarge sample variance of the HAF estimate of a, isgiven
by

6 D(r)

as) ~ 15
var(d:) (N —7)3 Sszia(O, T, T) (15)

with

D(7) = 46%ms o(0,0,0, 7, 7) + 20%m4 (0,0, 0)
+ 80*ma o (0,7, 7) + 80°7(0) + 20°
— [40’2m67a(0, T, 7,21, 27) + 20’4m47a(0, 27, 27’)]
(N —27)(N? — 47N + 7?)
(N —1)3

1(N —27)

where 1(.) is the unit step function. Observe that the vari-
ance of theHA F-based estimator dependson + and thefourth
and sixth-order moments of «(t). Hence, derivation of an
optimal r solely asafunction of IV, likeinthe constant am-
plitude case, appears not to be directly feasible. However,
the form of (15) suggests than an optimal ~ should be close
to0.5N.

S W+ e’

4. NUMERICAL EXAMPLESAND CONCLUSIONS

Inthissection, Monte-Carlosimulationsare performed toil-
lustratethe performances of thetwo proposed estimators. In
al thesimulations, «(¢) isgenerated as azero-mean AR(2)
processwith polesat pe**>/ and the additivenoiseiswhite
Gaussianwithvariance . The AR poleparametersare p =
0.95and f = 0.01, unless otherwise stated. The Signd to
Noise Ratio isdefined as SN R = r,(0)/c?. The chirp par
rameter vector isa = 27 [0.1 0.18 3 x 1074]". Fig-
ure 1 displaystheinfluence of = onto the performance of the
HAF estimator. It can be observed that the variance first de-
creases, then reaches a constant floor (for = between 0.2N
and 0.5 N') beforeincreasing when rislarge. Also, notethat,
for the optimal choice of ~ the variance of the HAF estimate
isabout 3.6 x CRB.
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Figure 1: Theoretical and empirica variances of a, in (12)
versusT. N = 256 and SN R = 10dB.

Figures2 to 5 display theinfluences of NV, SN R, p and
f respectively on theperformance of the estimators. Inthese
figures, 7 ischosen as 0.4 N . Since the theoretical variance
of theNL S estimator are very closeto the CRB’s, only these
latter are plotted. Thefollowing pointsareworth being noted

¢ Aspredicted by thetheoretical analysis, the NLS esti-
mator isseen to come closeto the Cramér-Rao Bound,
provided that N and SN R are sufficiently large (typ-
icaly N > 256 and SN R > 10dB). The HAF esti-
mate performs aswell asthe NLS for small N or low
SN R. In contrast, the NLS performs better for large
N orhighSNR.

e TheHAF estimator (and incertain respect theNLSes-
timator) exhibitsthethreshold effectin SN R whichis
inherent to nonlinear transformations and has already



been reported in other studies on the same kind of al-
gorithms.

¢ Theperformanceremains stableeven if thebandwidth
of a(t) increases, e.g., as p decreases or f increases.
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Figure 2: CRB (solid lines) and Mean Square Errors of a;
and @- versus number of samples. SN R = 10dB.
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Figure 3: CRB (solid lines) and Mean Square errors of a;
and a, versus SN R. N = 256.
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