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ABSTRACT

This paper considers the problem of estimating the parame-
ters of chirp signals with randomly time-varying amplitude.
Two methods for solving this problem are presented. First,
a nonlinear least-squares approach (NLS) is proposed. It is
shown that by minimizing the NLS criterion with respect to
all samples of the time-varying amplitude, the problem re-
duces to a two-dimensional maximization problem. A theo-
retical analysis of the NLS estimator is presented and an ex-
pression for its asymptotic variance is derived. It is shown
that the NLS estimator has a variance very close to the Cramér-
Rao Bound. The second approach combines the principles
behind the High-Order Ambiguity Function (HAF) and the
NLS approach. It provides a computationally simpler but
suboptimum estimator. A statistical analysis of this estima-
tor is also carried out. Numerical examples attest to the va-
lidity of the theoretical analysis and establish a comparison
between the two proposed methods.

1. INTRODUCTION AND OUTLINE

Retrieving the parameters of chirp signals embedded in mul-
tiplicative and additive noise is a topic of considerable inter-
est in many practical situations. Consider the radar applica-
tion where a target is illuminated. Then, the transmitted sig-
nal will be affected by two different phenomena. First, due to
the distance and relative motion between the target and the
receiver, the phase of the signal will be shifted. This phase
shift can be adequately modeled as �(t) = a0 + a1t+ a2t

2

provided that the motion is continuousand differentiable. The
parameters a1 and a2 are either related to speed and accel-
eration, or range and speed, depending on what the radar is
intended for and on the kind of waveforms transmitted [1].
Additionally, the signal will experience amplitude distortion
caused either by target fluctuation or scattering of the medium
(e.g., fading). This manifests itself as a random time-varying
amplitude �(t) which can be viewed as an unwanted phe-
nomenom (hence the terminology multiplicative noise often
used in the literature). The cases of constant amplitude chirp
signals and exponential signals with time-varying amplitude
have been addressed thoroughly (see [2, 3] and references

therein). In contrast, the literature is more scarse regarding
chirp signals with random, time-varyingamplitudes. The case
of deterministic amplitude�(t) is treated in [4]-[5] whereas
[6]-[7] consider random amplitudes. Cramér-Rao Bounds
are derived in [6] when �(t) is a stationary process whose
covariance matrix depends on a finite dimensional parame-
ter vector. A broader class of random amplitudes is consid-
ered in [7] where cyclostationary solutions are investigated
to solve the problem. More precisely, for a chirp signal, use
of the cyclic 2nd-order moment is advocated.

Two approaches are presented in this paper. The first re-
lies on Nonlinear Least-Squares estimation of the chirp pa-
rameters. Since this approach may be computationally in-
tensive for certain applications, a simpler approach is pro-
posed which borrows ideas from the HAF and the NLS es-
timator.

2. NLS ESTIMATION

The signal to be dealt with herein is given by

y(t) = �(t)ei(a0+a1t+a2t
2) + n(t) t = 0; � � � ; N � 1

= s(t) + n(t)

where �(t) is assumed to be a real-valued Gaussian station-
ary process and n(t) is a white complex circular Gaussian
process with zero mean and variance �2, i.e., Efn(t)n(t +
� )g � 0, Efn�(t)n(t+ � )g = �2�(� ). Additionally,n(t) is
assumed to be independent of�(t). The NLS approach con-
sists of estimating the parameters a0; a1; a2, as well as all
samples f�(t)gt=0;��� ;N�1 of the time-varying amplitude
by minimizing the following criterion :

J (�; a) =
1

N

N�1X
t=0

���y(t) � �(t)ei(a0+a1t+a2t
2)
���2 (1)

where � = [�(0); � � � ; �(N � 1)]T and a = [a0; a1; a2]
T .

In the next proposition, we show how estimates of � and a

can be obtained.



Proposition 1. The vectors� and a which minimize (1) are
given by

ba1;ba2 = argmax
a1;a2

1

N

�����
N�1X
t=0

y2(t) � e�i2(a1t+a2t
2)

�����
2

(2)

ba0 = 1

2
angle

(
N�1X
t=0

y2(t) � e�i2(ba1t+ba2t
2)

)
(3)

b�(t) = Re
n
y(t) � e�i(ba0+ba1t+ba2t

2)
o

(4)

Proof : see [8].
Note that a “true” NLS estimator would proceed by min-

imizing (1) with respect to a and the parameter vector � on
which �(t) would depend. The approach we propose tacitly
considers that the realization of �(t) is frozen and has to be
estimated. This in turn decreases the computational complex-
ity since only a 2D maximization problem needs to be solved
when minimizing with respect to� and not wrt�. Addition-
ally, it should be emphasized that the present approach does
not rely on any assumed structure for the amplitude; hence,
it has the desirable property of being applicable to a wide
class of signals.

Remark 1. In the constant amplitude case (i.e., �(t) � �0),
the estimate of �0 would be an average, e.g.,b�0 = 1

N

���PN�1
t=0 y(t) � e�i(ba1t+ba2t

2)
���. In the time-varying

scenario, each sample of �(t) is estimated (see (4)) which
leads to the squaring of the data.

Remark 2. The estimates of a as given by (2) and (3) are
equivalent to those that wouldhave been obtained by solving
the following minimization problemnba; bAo = argmin

A;a

N�1X
t=0

���y2(t) �Aei2(a0+a1t+a2t
2)
���2

(5)

Moreover, it can be readily verified that the estimate bA of
the “signal amplitude” as obtained from (5) is a consistent
estimate of r�(0) = E

�
�2(t)

	
. Hence, the NLS estimator

“views” the signal as

y2(t) = r�(0)e
i2(a0+a1t+a2t

2) +�(t) (6)

We now analyze the performance of the estimates of a1
and a2 as given by (2) and derive an expression for their vari-
ances.

Proposition 2. The asymptotic variances of ba1 and ba2 in (2)
are given by

var (ba1) ' 96

N3

1

SNR

�
1 +

1

2
SNR�1

�
var (ba2) ' 90

N5

1

SNR

�
1 +

1

2
SNR�1

�
(7)

where SNR = r�(0)=�
2.

Proof : see [8].
It should be stressed that although �(t) may be colored,

the variance expression (7) involves only the zero-lag term
r�(0). Additonally, similar to the constant amplitude case,
the variances of ba1 and ba2 are seen to be of orders 1=N3 and
1=N5, respectively. Finally, it is of interest to compare the
above expressions with the Cramér-Rao Bounds (CRB) de-
rived in [6]. In the high SNR case, the CRB’s are given by
(see [6, eq. (89)])

CRB (ba1) ' 96
N3

1
SNR

CRB (ba2) ' 90
N5

1
SNR

(8)

Comparing (7) with (8), it is seen that the NLS estimator pro-
vides nearly efficient estimates.

3. HAF-BASED APPROACH

Since the NLS estimator involves a 2D maximization, we
consider a simpler approach. Specifically, we would like to
apply the original HAF based approach of Peleg and Porat.
Consider first the noiseless case. It is readily verified that

s�(t)s(t + � ) = �(t)�(t+ � )eia1�eia2�
2

ei2a2t� (9)

where � is some positive integer (� > 0). Hence, s2 (t; � ) =
s�(t)s(t+� ) is an exponential signal with time-varying am-
plitude� (t; � ) = �(t)�(t+� ). In the noisy case, we obtain

y2 (t; � ) = y�(t)y(t + � )

= s�(t)s(t + � ) + n2 (t; � ) (10)

wheren2 (t; � ) = s�(t)n(t+� )+n� (t)s(t+� )+n� (t)n(t+
� ) is a zero-mean (since � > 0) process with covariance

E fn�2 (t; � )n2 (t+ r; � )g =
�
2�2r�(0) + �4

�
� (r) (11)

Therefore, y2 (t; � ) is an exponential signal with random time-
varying amplitude � (t; � ) = �(t)�(t+� ) in complex zero-
mean white noise n2 (t; � ). However, the distributions of
� (t; � ) and n2 (t; � ) are quite complicated to obtain; hence
an optimal (e.g., Maximum Likelihood) approach is to be
forgotten. Thus, we are naturally led to usinga NLS approach
with y2 (t; � ) as the data. The steps involved in the estima-
tion of a1 and a2 are now described.

Step 1 For a given � , compute y2 (t; � ) = y�(t)y(t+� ).
Then estimate a2 as

ba2 = 1

2�
arg min

�;';!

1

N

N�1X
t=0

���y2 (t; � )� � (t; � ) ei(!t+')
���2

=
1

2�
argmax

!

1

N

�����
N�1X
t=0

y22 (t; � ) e
�i2!t

����� (12)



which follows from Proposition 1. Note that ba2 can be ob-
tained via the Fast Fourier Transform of y22 (t; � ).

Step 2 Once ba2 is available demodulate y (t) to obtain

z (t) = y (t)� e�iba2t
2

' � (t) ei(a0+a1t) + en (t) (13)

where en (t) combines the estimation errors in ba2 and the ef-
fect of additive noise. a1 is thus obtained as

ba1 = arg min
�;';!

1

N

N�1X
t=0

���z (t) � � (t) ei(!t+')
���2

= argmax
!

1

N

�����
N�1X
t=0

z2 (t) e�i2!t

����� (14)

We note that the previous approach is simpler than the
NLS approach as it only involves lag products and FFT’s.
In the next section, we will examine the trade-offs between
statistical accuracy of the NLS estimator and computational
simplicity of the HAF estimator.

Remark 3. It can be readily verified that the estimate ba2 in
(12) implicitlyrelies on a 4th-order transformationof the data

sinceba2 = 1
2� argmax!

1
N

���PN�1
t=0

�
y� (t) y (t+ � ) e�i!t

�2���.
In fact, the HAF-based scheme amounts to using the “clas-
sical” HAF-estimator (i.e., the estimator originally designed
for constant amplitude chirps) but with y(t) replaced by y2(t).

Remark 4. A statistical analysis of the HAF-based estimateba2 in (12) is carried out in [8]. Assuming that N � � � 1,
the large sample variance of the HAF estimate of a2 is given
by

var(ba2) ' 6

(N � � )3
D(� )

8�2m2
4;�(0; �; � )

(15)

with

D(� ) = 4�2m6;�(0; 0; 0; �; � )+ 2�4m4;�(0; 0; 0)

+ 8�4m4;�(0; �; � ) + 8�6r�(0) + 2�8

�
�
4�2m6;�(0; �; �; 2�; 2� ) + 2�4m4;�(0; 2�; 2� )

�
�

(N � 2� )(N2 � 4�N + �2)

(N � � )3
1(N � 2� )

where 1(:) is the unit step function. Observe that the vari-
ance of the HAF-based estimator depends on � and the fourth
and sixth-order moments of �(t). Hence, derivation of an
optimal � solely as a function of N , like in the constant am-
plitude case, appears not to be directly feasible. However,
the form of (15) suggests than an optimal � should be close
to 0:5N .

4. NUMERICAL EXAMPLES AND CONCLUSIONS

In this section, Monte-Carlo simulations are performed to il-
lustrate the performances of the two proposed estimators. In
all the simulations,�(t) is generated as a zero-mean AR(2)
process with poles at �e�i2�f and the additive noise is white
Gaussian with variance �2. The AR pole parameters are � =
0:95 and f = 0:01, unless otherwise stated. The Signal to
Noise Ratio is defined as SNR = r�(0)=�2. The chirp pa-

rameter vector is a = 2�
�
0:1 0:18 3� 10�4

�T
. Fig-

ure 1 displays the influence of � onto the performance of the
HAF estimator. It can be observed that the variance first de-
creases, then reaches a constant floor (for � between 0:2N
and 0:5N ) before increasing when � is large. Also, note that,
for the optimal choice of � the variance of the HAF estimate
is about 3:6� CRB.
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Figure 1: Theoretical and empirical variances of ba2 in (12)
versus � . N = 256 and SNR = 10dB.

Figures 2 to 5 display the influences of N , SNR, � and
f respectively on the performance of the estimators. In these
figures, � is chosen as 0:4N . Since the theoretical variance
of the NLS estimator are very close to the CRB’s, only these
latter are plotted. The followingpointsare worth being noted
:

� As predicted by the theoretical analysis, the NLS esti-
mator is seen to come close to the Cramér-Rao Bound,
provided that N and SNR are sufficiently large (typ-
ically N � 256 and SNR � 10dB). The HAF esti-
mate performs as well as the NLS for small N or low
SNR. In contrast, the NLS performs better for large
N or high SNR.

� The HAF estimator (and in certain respect the NLS es-
timator) exhibits the threshold effect inSNRwhich is
inherent to nonlinear transformations and has already



been reported in other studies on the same kind of al-
gorithms.

� The performance remains stable even if the bandwidth
of �(t) increases, e.g., as � decreases or f increases.
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Figure 2: CRB (solid lines) and Mean Square Errors of ba1
and ba2 versus number of samples. SNR = 10dB.
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Figure 3: CRB (solid lines) and Mean Square errors of ba1
and ba2 versus SNR. N = 256.
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