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ABSTRACT
This paper presents a novel VLSI architecture for computing the
N-point discrete Fourier transform (DFT) based on a radix-2 fast
algorithm, where N is a power of two. The architecture consists
of one complex multiplier, two complex adders, and some special
memory units. It can compute one transform sample every
log2N+1 clock cycles in average. For the case of N=512, the chip
area required is about 5742x5222 µm2 and the throughput is up
to 4M transform samples per second under 0.6 µm CMOS
technology. Such area-time performance makes the proposed
design rather attractive for use in long-length DFT applications,
such as ADSL and OFDM systems.

1.  INTRODUCTION

The discrete Fourier transform (DFT) is an important tool in the
area of digital signal processing. Among many possible DFT
applications, multicarrier modulation [1] has shown to be an
effective way to achieve reliable, efficient data transmission.
There are two forms of multicarrier modulation that have
received great attention in the communications industry. One is
called discrete multitone (DMT) modulation [2], and the other is
called orthogonal frequency division multiplexing (OFDM) [3].
DMT technology has been selected as standards for asymmetric
digital subscriber lines (ADSL) service on ordinary phone lines
[4], [5], while OFDM technology has been extensively
investigated for broadcast applications and wireless
communications [6], [7]. Both ADSL and OFDM applications
involve long-length DFT computation, where the transform
length is up to 512 or more. Since such long-length DFT
computation is rather time-consuming, special fast Fourier
transform (FFT) processors are necessary to meet the real-time
requirements. A number of previous FFT architectures could be
considered for this purpose (see, for example, [8]-[11]).
However, most of them are not suitable for single-chip
implementation due to their use of a lot of complex multipliers.

In this paper, we propose a new FFT processor for ADSL/OFDM
applications. The proposed architecture realizes a radix-2 FFT
algorithm by using one complex multiplier, two complex adders,
one ROM, and some special memory-based buffers. A prototype
chip for 512-point DFT is given to demonstrate its usefulness.

2.  AN ALGORITHM FOR FFT COMPUTATION

Consider the N-point DFT defined by
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where N is a power of two and WN=exp(-j2π/N). Letting X=[x0,
x1, ... xN-1]

T be the input vector and Y=[y0, y1, ... yN-1]
T be the

output vector, we can rewrite (1) as follows:
Y W X= ( )N                                                                         (2)
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is called a transform matrix. With the property of WN
mk=(-1)k

WN
(m+N/2)k, we can partition the matrix W(N) into four quadrants

by shifting all its even-numbered rows to the upper half portion.
This is equivalent to multiplying both sides of (2) by a
permutation matrix Q(N)=[ e0 e2 e4 ... eN-2 e1 e3 e5... eN-1]

T with en

being a unit Nx1 column vector whose (n+1)-th element is 1, i.e.,
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where E(N/2), D(N/2), and their relationship are given as
follows:
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Substituting (7) into (4) yields
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Since WN
2kn=WN/2

kn, we can observe from (3) and (5) that E(N/2)
=W(N/2). Thus, (9) can be rewritten as
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For ease of presentation, we define WN/M(N/2) as the direct sum
[12] of N/M W(M)’s of  size MxM, i.e.,
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With similar direct-sum definitions for matrices QN/M(M) and
PN/M(M), we can express (11) as follows:

[Q Y] W P X]1 2 1( ) ( / )[ ( )N N N= 2                                          (13)

Note that (13) can be regarded as an N-point transform with
transform matrix W2(N/2), input vector P1(N)X, and output
vector Q1(N)Y. Since W2(N/2)= W(N/2)⊕W(N/2), this N-point
transform can be partitioned into two N/2-point DFT’s with
transform matrix W(N/2) each. Using the permutation matrix
Q(N/2)=[ e0 e2 e4 ... eN/2-2 e1 e3 e5... eN/2-1]

T for each N/2-point DFT
(i.e., multiplying both sides of (13) by Q2(N/2)=Q(N/2)⊕Q(N/2))
and following the procedure of (4)-(13), we can further
decompose each N/2-point DFT into two N/4-point DFT’s with
transform matrix W(N/4) each. This can be described as

[Q Q Y] W P P X]2 1 4 2 1( / ) ( ) ( / )[ ( / ) ( )N N N N N2 4 2=              (14)

where P2(N/2)=P(N/2)⊕P(N/2). Repeating such a decomposition
process until WN(1)= IN (an identity matrix) appears, we have

XPPPY]QQ[Q 11 )(  )4()2()(  )4()2( 4242 NN N/N/N/N/ LL = .    (15)

This equation implies that we can compute the 1-D DFT by
performing a series of matrix-vector multiplications. It is
interesting to see that performing the matrix-vector multiplication
with PN/M(M) in (15) is equivalent to realizing the (log2N/M+1)th
stage of the well-known radix-2 decimation-in-frequency FFT
algorithm [13] and the resulting output vector (denoted by Z) is
the bit-reversed version of Y. That is,

Z = [ ]
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It should also be noted that the matrix formulation given here is
similar to that given by Pease [14], with the difference that each
of the coefficient matrices (PN/M(M)) for the former is further
decomposed into two matrices as expressed in (10).

3.  REALIZATION OF THE FFT ALGORITHM

3.1 Architecture
Fig. 1 shows an architecture for computing the N-point DFT
based on the FFT algorithm described above. It mainly consists
of three two-port RAM’s, a complex multiplier, two complex
adders, and two multiplexers, where the signal parameters used
in RAM’s are: RA: read address, WA: write address, DO: data
output, DI: data input, and CK: clock signal for triggering the
read/write actions. Each two-port RAM has N/2 addresses and is
able to read-and-then-write at an assigned address in one clock
cycle. Initially, the input data vector X (consisting of N data
samples) are loaded into the system via a multiplexer sample by
sample, where the selection signal (I/O CTRL) of the multiplexer
is 0 during this initial phase. The first N/2 data samples are stored

on RAM-1 during the first N/2 cycle periods, and the other N/2
data samples are stored on RAM-2 during the second N/2 cycle
periods. Here RAM-1 has addresses 0 ~ N/2-1, and RAM-2 has
addresses N/2 to N-1. Once the initial data loading is finished,
these N data samples will be read out from RAM-1 and RAM-2
to realize the 1st-stage matrix-vector multiplication (with
coefficient matrix P1(N)) of the FFT algorithm on the two adders,
RAM-3, and the multiplier in next N cycles. The temporary
results generated at this stage are then fed back to RAM-1 and
RAM-2 via a multiplexer for performing the 2nd-stage matrix-
vector multiplication with coefficient matrix P2(N/2). Note that
RAM-3 acts as a first-in-first-out (FIFO) buffer, which can delay
a data sequence by N/2 cycle periods for the 1st-satge operations,
by N/4 cycle periods for the 2nd-stage operations, and so on.
Moreover, a ROM is required to store all the transform
coefficients for the FFT algorithm. This is not shown in Fig. 1.
Realization of the 2nd-stage matrix-vector multiplication et al. is
rather similar to that of the 1st-stage matrix-vector multiplication.
The main difference is in the arrangement of addressing/control
sequences.

For clearly understanding the operations of the proposed FFT
architecture, let us consider how an 8-point DFT will be
computed on it. In this case, (16) becomes
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where X=[x0, x1, ... x7]
T  and Z=[z0, z1, ... z7]

T. There will be four
(in general log2N+1) phases of operations involved in the
transform process. They are summarized as follows:
(1) Phase 0 (from cycles 0 ~ 7): The input data vector X is loaded

into RAM-1 and RAM-2. The addressing/control sequences
required are given in Table I (a).

(2) Phase 1 (from cycles 8 ~ 15): The 1st-satge matrix-vector
multiplication, i.e., A=[a0, a1, ... a7]

T=P1(8)X, is performed.
The addressing/control sequences required are given in Table
I (b). In this phase, RAM-3 acts as a 4-cycle delay buffer.

(3) Phase 2 (from cycles 16 ~23): The 2nd-stage matrix-vector
multiplication, i.e., B=[b0, b1, ... b7]

T=P2(4)A, is performed.
The addressing/control sequences required are given in Table
I (c). In this phase, RAM-3 acts as a 2-cycle delay buffer.

(4) Phase 3 (from cycles 24 ~31): The 3rd-stage matrix-vector
multiplication, i.e., Z=[z0, z1, ... z7]

T=P4(2)B,  is performed.
The addressing/control sequences required are given in Table
I (d). In this phase, RAM-3 acts as a 1-cycle delay buffer. The
final output sequence is the bit-reversed version of the desired
transform sequence, i.e., {z0, z1, z2, z3, z4, z5, z6, z7}={y 0, y4,
y2, y6, y1, y5, y3, y7}.

With little effort, one can check from Table I that the proposed
architecture realizes the N-point FFT algorithm described in
Section 2 in N+Nlog2N cycle periods. Looks like the
addressing/control sequences required for each phase is different,
and one might ask how to provide them using simple circuitry.
Fortunately, we found that this can easily be achieved by using a
log2N-bit counter. For N=8, the most significant bit (MSB) ω2 of
a 3-bit counter can generate the CTRL sequence for Phases 1, the
middle bit ω1 can generate that for Phase 2, and the least
significant bit (LSB) ω0 can generate that for Phase 3. Similarly,
the RA and WA sequences for RAM-1, RAM-2, and RAM-3 at



each phase can also be derived from bits of a 3-bit counter. All of
these are detailed in Table II. For N=512, a 9-bit counter can be
used to generate all the control/addressing sequences in a manner
as shown in Table III.

3.2 Chip Design
Fig. 2 shows a chip layout of the proposed architecture for a
512-point DFT, where the external data wordlength is 16 bits and
the internal data wordlength is 24 bits. The design contains a
complex-valued multiplier including four real-valued multipliers.
It is based on a standard cell library for 0.6 µm CMOS
technology. The chip requires a die size of 5747x5222 µm2

(containing about 400 000 transistors) and is able to operate at a
clock rate up to 40 MHz for reaching a throughput of 4M
transform samples per second in average. Such speed
performance meets the requirements of standard DMT-based
ADSL transceivers [4], [5].

4.  SUMMARY
A novel VLSI architecture has been proposed for N-point DFT
computation, where N is a power of two. It realizes a matrix
formulation of the radix-2 DIF FFT algorithm using only one
complex multiplier, three special two-port RAM’s of N/2 words
each, two complex adders, one ROM, and some simple logical
circuits. The proposed design is able to provide a throughput of
several Mega or more transform samples per second for most
practical cases of interest, but still retains the low-complexity
feature. It is rather attractive for use in real-time long-length DFT
applications, such as ADSL/OFDM transmission systems.
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TABLE I  Arrangement of the Control/Addressing Sequences for the Four Phases of the 8-Point FFT Algorithm

(a) RAM-1 RAM-2 RAM-3 RAM-1 or RAM-2 (b) RAM-1 RAM-2 RAM-3 RAM-1 or RAM-2
CTRLRA DO RA DO RA/WA DI DO WA DI Time CTRLRA DO RA DO RA/WA DI DO WA DI

X X X X X X X X 000 x0 000 0 000x0 100 x4 00 x0-x4 X 000 x0+x4= a0

X X X X X X X X 001 x1 001 0 001x1 101 x5 01 x1-x5 X 001 x1+x5= a1

X X X X X X X X 010 x2 010 0 010x2 110 x6 10 x2-x6 X 100 x2+x6= a2

X X X X X X X X 011 x3 011 0 011x3 111 x7 11 x3-x7 X 101 x3+x7= a3

X X X X X X X X 100 x4 100 1 000X 100 X 00 X x0-x4 010 (x0-x4) ⋅W8
0 = a4

X X X X X X X X 101 x5 101 1 001X 101 X 01 X x1-x5 011 (x1-x5) ⋅W8
1= a5

X X X X X X X X 110 x6 110 1 010X 110 X 10 X x2-x6 110 (x2-x6) ⋅W8
2 = a6

X X X X X X X X 111 x7 111 1 011X 111 X 11 X x3-x7 111 (x3-x7) ⋅W8
3= a7

I/O CTRL=0 I/O CTRL=1

(c) RAM-1 RAM-2 RAM-3 RAM-1 or RAM-2 (d) RAM-1 RAM-2 RAM-3 RAM-1 or RAM-2
CTRL RA DO RA DO RA/WA DI DO WA DI Time CTRL RA DO RA DO RA/WA DI DO WA Output Data

0 000 a0 100 a2 00 a0-a 2 X 000 a0+a2= b0 000 0 000b0 100 b1 00 b0-b 1 X X b0+b1= z0

0 001 a1 101 a3 01 a1-a 3 X 100 a1+a3= b1 001 1 000X 100 X 00 X b0-b 1 X (b0-b1) ⋅W2
0 = z1

1 000 X 100 X 00 X a0-a2 001 (a0-a2) ⋅W4
0 = b2 010 0 001b2 101 b3 00 b2-b 3 X X b2+b3= z2

1 001 X 101 X 01 X a1-a3 101 (a1-a3) ⋅W4
1 = b3 011 1 001X 101 X 00 X b2-b 3 X (b2-b3) ⋅W2

0 = z3

0 010 a4 110 a6 00 a4-a6 X 010 a4+a6= b4 100 0 010b4 110 b5 00 b4-b5 X X b4+b5= z4

0 011 a5 111 a7 01 a5-a7 X 110 a5+a7= b5 101 1 010X 110 X 00 X b4-b5 X (b4-b5) ⋅W2
0 = z5

1 010 X 110 X 00 X a4-a6 011 (a4-a6) ⋅W4
0 = b6 110 0 011b6 111 b7 00 b6-b7 X X b6+b7= z6

1 011 X 111 X 01 X a5-a7 111 (a5-a7) ⋅W4
1 = b7 111 1 011X 111 X 00 X b6-b7 X (b6-b7) ⋅W2

0 = z7

I/O CTRL=1 I/O CTRL=1

X :don’t care.

TABLE II  Generation of  the Control/Addressing Sequences for the 8-Point FFT Algorithm Using a 3-Bit Counter

Up
CTRL

for Phase
RA of RAM-1

for Phase
RA of RAM-2

for Phase
RA/WA of RAM-3

for Phase
WA of RAM-1 or RAM-2

for Phase
Counter 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

000 X 0 0 0 X 000 000 000 X 100 100 100 X 00 00 00 000 000 000 X
001 X 0 0 1 X 001 001 000 X 101 101 100 X 01 01 00 001 001 100 X
010 X 0 1 0 X 010 000 001 X 110 100 101 X 10 00 00 010 100 001 X
011 X 0 1 1 X 011 001 001 X 111 101 101 X 11 01 00 011 101 101 X
100 X 1 0 0 X 000 010 010 X 100 110 110 X 00 00 00 100 010 010 X
101 X 1 0 1 X 001 011 010 X 101 111 110 X 01 01 00 101 011 110 X
110 X 1 1 0 X 010 010 011 X 110 110 111 X 10 00 00 110 110 011 X
111 X 1 1 1 X 011 011 011 X 111 111 111 X 11 01 00 111 111 111 X

ω2ω1ω0 X ω2 ω1 ω0 X 0ω1ω0 0ω2ω0 0ω2ω1 X 1ω1ω0 1ω2ω0 1ω2ω1 X ω1ω0 0ω0 00 ω2ω1ω0 ω1ω2ω0 ω0ω2ω1 X

TABLE III  Generation of  the Control/Addressing Sequences for the 512-Point FFT Algorithm Using a 9-Bit Counter

Phase Number RA of RAM-1 RA of RAM-2 RA/WA of RAM-3 CTRLWA of RAM-1 or RAM-2
0  ( Initial loading ) X X X X ω8ω7ω6ω5ω4ω3ω2ω1ω0

1  ( Computation with P1(512) ) 0 ω7ω6ω5ω4ω3ω2ω1ω0 1 ω7ω6ω5ω4ω3ω2ω1ω0 ω7ω6ω5ω4ω3ω2ω1ω0 ω8 ω7ω8ω6ω5ω4ω3ω2ω1ω0

2  ( Computation with P2(256) ) 0 ω8ω6ω5ω4ω3ω2ω1ω0 1 ω8ω6ω5ω4ω3ω2ω1ω0 0  ω6ω5ω4ω3ω2ω1ω0 ω7 ω6ω8ω7ω5ω4ω3ω2ω1ω0

3  ( Computation with P4(128) ) 0 ω8ω7ω5ω4ω3ω2ω1ω0 1 ω8ω7ω5ω4ω3ω2ω1ω0 0   0 ω5ω4ω3ω2ω1ω0 ω6 ω5ω8ω7ω6ω4ω3ω2ω1ω0

4  ( Computation with P8(64) ) 0 ω8ω7ω6ω4ω3ω2ω1ω0 1 ω8ω7ω6ω4ω3ω2ω1ω0 0   0  0 ω4ω3ω2ω1ω0 ω5 ω4ω8ω7ω6ω5ω3ω2ω1ω0

5  ( Computation with P16(32) ) 0 ω8ω7ω6ω5ω3ω2ω1ω0 1 ω8ω7ω6ω5ω3ω2ω1ω0 0   0  0  0 ω3ω2ω1ω0 ω4 ω3ω8ω7ω6ω5ω4ω2ω1ω0

6  ( Computation with P32(16) ) 0 ω8ω7ω6ω5ω4ω2ω1ω0 1 ω8ω7ω6ω5ω4ω2ω1ω0 0   0  0  0  0 ω2ω1ω0 ω3 ω2ω8ω7ω6ω5ω4ω3ω1ω0

7  ( Computation with P64(8) ) 0 ω8ω7ω6ω5ω4ω3ω1ω0 1 ω8ω7ω6ω5ω4ω3ω1ω0 0   0  0  0  0  0  ω1ω0 ω2 ω1ω8ω7ω6ω5ω4ω3ω2ω0

8  ( Computation with P128(4) ) 0 ω8ω7ω6ω5ω4ω3ω2ω0 1 ω8ω7ω6ω5ω4ω3ω2ω0 0   0  0  0   0  0   0  ω0 ω1 ω0ω8ω7ω6ω5ω4ω3ω2ω1

9  ( Computation with P256(2) ) 0 ω8ω7ω6ω5ω4ω3ω2ω1 1 ω8ω7ω6ω5ω4ω3ω2ω1 0   0  0  0   0  0   0   0 ω0 X


