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ABSTRACT

A wavelet transform is introduced as a means of detecting the char-
acteristic scale or periodT of a radar pulse sequence in an in-
coming stream of pulses. A particular choice of mother wavelet
contains a fixed number,M , of cycles of a complex exponential,
which provides a resolution of1=M timesT . The transform op-
erates on interleaved pulse sequences and, by thresholding, de-
terminesT for each component sequence. The detector is robust
against missing pulses and timing jitter and is sensitive to sim-
ple, staggered and complex pulse sequences. The method is an
improvement on other established approaches, such as the time-
difference-of-arrival (TDOA) histogram and the periodogram.

1. INTRODUCTION

A surveillance system used to detect and identify radars will mea-
sure certain characteristics of the radar emissions to ascertain the
nature of the source [1, 2, 3]. The majority of the radars that
one encounters in practice emit energy in predefined sequences
of pulses. The timing of these pulses follow simple or complex
patterns described by measurable parameters, such as stagger or
pulse repetition intervals.

It is useful, for the purpose of detecting and identifying radars
in the environment, to treat these sequences as signals. The prob-
lem of determining the presence of a specific emitter in the envi-
ronment is then a problem of detection. The presence or absence
of an emitter is a function of the incoming stream of pulses.

A significant problem arises when the signals from two or
more emitters overlap in time. The pulses arrive in natural time
order and so become interleaved. This complicates the task of
identifying individual sequences. It is sometimes difficult, or im-
possible, to determine which pulses belong to which emitters, or
even how many emitters are represented in an interleaved pulse
stream.

An established procedure for processing interleaved pulse se-
quences is based on time-difference-of-arrival (TDOA) histogram-
ming [4, 5, 6]. The essence of this method is first to do a coarse
search in PRI using TDOA histogramming, removing any sequences
with the detected PRI’s from the interleaved pulse stream, and then
to repeat the process on the remaining data. Another approach is
to search a periodogram for pulse repetition frequencies (PRF’s)
[7, 8, 9].

A number of complications impact the effectiveness of these
two approaches. The traditional method, TDOA histogramming,
(1) produces false detections at multiples of the true PRI’s, (2)

is sensitive to the bin width, (3) fails to detect complex pulse se-
quences and (4) is a computation-intensive procedure. Worst of all,
interleaved pulse streams (5) produce a background of false pulse
gaps in the histogram, which bury the true PRI’s. The periodogram
(1) produces false detections at multiples of the true PRF’s, (2)
fails to detect short sequences, (3) fails to detect complex or wob-
ulated sequences, and (4) provides an inefficient search strategy.
Another well-known technique, the fast-folding method [10], re-
quires a histogram search for each folding period.

In this paper, we describe a method [11], based on a contin-
uous wavelet transform, for detecting radar pulse sequences. It
operates directly on interleaved pulse streams. The detector func-
tion contains two arguments: one corresponding to location in time
and the other corresponding to a characteristic period or scale,T .
A single adjustable parameterM fixes the resolution of the detec-
tor.

The new method overcomes the complications of the other ap-
proaches: (1) harmonics are suppressed by a factor of four or more,
(2) cross interference effects between interleaved pulse sequences
are minimized, (3) detection of wobulated and complex stagger se-
quences is improved, and (4) the procedure of searching forT is
fast.

2. DETECTION METHOD

Our approach to the solution of this problem is first to represent
the set of received TOA’s,ftjg, as a superposition of impulses,
s(t) =

P
j �(t�tj), and then to apply a continuous wavelet trans-

formation to the signal based on themother wavelet

 (t) =M�
1

2 �(t=M) e2�it; (1)

where�(t) is a rectangular window of unit length andM is the
minimum length pulse train we expect to receive or wish to detect.
Wavelet (t) satisfies the admissibility condition for a CWT [12]
whenM is a positive integer. The transform is reminiscent of a
Fourier transform, with a window of lengthMT . But notice the
window length varies withT .

The wavelet transform of signals(t) gives

D(T; t) =
T

M
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: (2)

We flag a detection wheneverD exceeds a thresholda. The detec-
tion represents the presence of a pulse train atT . The normaliza-
tion ensures thata is of order unity.
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Figure 1: The detector functionD(T; t) for a simple pulse train
with PRITS andM = 12. In this plot,t is set to zero.

The detector is sensitive to radar pulse sequences of the fol-
lowing three types: simple, staggered and complex. The simple
sequence contains a single PRI,TS . The times of arrival in this
sequence are

tj = (j � 1)TS + t�; j = 1; : : : ; N; (3)

Here,t� is the reference time orphase. The staggered sequence
hasM pulse gaps,T1; : : : TM , that repeat inM -count cycles:
Tj+M = Tj . The times of arrival are

t1 = t� (4)

tj = tj�1 + Tj ; j = 2; : : : ; N:

The possibilities for complex sequences are unlimited. A wobu-
lated sequence, for example, is produced by

Tj = A cos(Bj +C) (5)

where A, B and C are constants.
For the simple pulse train of Equation 3, the detector function

works out simply to equal

D(T; t) =
sin2[N(T; t)�TS=T ]

M2 sin2(�TS=T )
(6)

whereN(T; t) is the number of pulses in a window of lengthMT
att. AsT andt vary, pulses drop in and out of the window, causing
D(T; t) to jump discontinuously. A plot ofD for a single pulse
train is shown in Figure 1. A nominal threshold is indicated by a
dashed line. The threshold rejects allT exceptjT�TSj . TS=M .
There is ample margin for fluctuations in the heights of the first and
second peaks. This margin provides robustness against the effects
of missing pulses, timing jitter and the interference of interleaved
pulse sequences.

The second, third and fourth harmonics, atTS=2, TS=3 and
TS=4, are suppressed by factors of 4, 9 and 16, respectively.

ParameterM controls the resolution of the detector. The res-
olution is inversely proportional toM , �T=T = �f=f � 1=M .
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Figure 2: The CWT detector function for the interleaved set of
three pulse trains.

This means, given a fixed value forM , that pulse sequences at
different length scales are treated equivalently, that is,D(T; t) is
scale invariant. A large range of PRI’s occur in practice, on the
order of from 10 us to 10 ms, which covers three orders of magni-
tude. A single valueM applies to the full range.

A practical value for application to radar isM = 12. Larger
values ofM provide higher resolutions, but thenD(T; t) fails to
detect short pulse sequences. A radar scan dwell may contain only
ten or twenty pulses. AtM = 12, the detector’s resolution is
about 10 per cent and it is sensitive to scans of eight or ten pulses.
The wavelet detector does not estimateT as precisely as, say, a
least-squares fit. It is intended for use in a first pass on an incom-
ing pulse stream to determine the number of emitters, to locate the
associated pulse sequences in time and to find approximate val-
ues forT . Once the sequences are located, individual pulses can
be isolated and precise estimates of inter-pulse parameters can be
found.

The wavelet detector is sufficiently robust to assign a char-
acteristic quantityT to each simple, staggered or complex radar
sequence in an interleaved pulse stream.

A useful property follows from Equation 2. An interleaved
pulse stream,s(t), is a sum of termss1(t)+s2(t)+s3(t)+� � � cor-
responding to the radar pulse sequences contributing tos(t). The
inner product

R
 �s is a linear transform. If the magnitude-squared

cross terms are small compared to 1,D(T; t) behaves like the sum
D1(T; t) + D2(T; t) +D3(T; t) + � � � of detection functions of
independent pulse sequences. In this case, the characteristicT 0s
can be deduced fromD(T; t) without de-interleaving the pulse
stream. Often, though not always, the interference condition is
satisfied when the characteristicT ’s differ by �T & T=M .

3. SIMULATION RESULTS

An example with three interleaved pulse sequences is shown in
Figure 2. In this example, all three sequences are of the simple
type with PRI’s of 1.2, 2.0 and 5.0. The detector function crosses
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Figure 3: DetectionsD(T; t) > 0:5, marked�, in a pulse stream
of three interleaved pulse sequences: one simple, one staggered
and one wobulated.

the threshold at just these three PRI’s.
A more complex example is presented in Figure 3. This is a

plot of detections over a period of time for a stream of three inter-
leaved pulse sequences: one simple, one staggered and one wob-
ulated. The simple sequence has a PRITS=10 and extends from
t=20 to 140. The staggered sequence has four stagger intervals
T1=3.15,T2=2.45,T3=2.80 andT4=2.10, with an average length
of 2.63, and extends fromt=62.1 to 186.0 The wobulated sequence
has a mean PRI equal to 4.0 and the PRI varies by�10%. It con-
tains 50 pulses per wobulation cycle. Detections corresponding
to these three pulse sequences are easily recognized in the dia-
gram. Notice the width of each band of detections increases with
T . This is as expected. The scale-invariantD(T; t) has constant
relative resolution,�T �MT . We notice a small number of false
and missing detections. These are caused by the interleaving cross
terms that we discussed before.

Figures 4 and 5 show periodogram and TDOA histogram plots
for the same interleaved set of three simple pulse trains as in Fig-
ure 2. The most apparent advantage of the wavelet detector is the
one-to-one correspondence between the sharp peaks and the indi-
vidual pulse sequences. There is one threshold crossing for each
PRI. In the periodogram, Figure 4, the correspondence between
peaks and pulse sequences is not as clear. Some of the peaks
are harmonics of the true PRI’s. It is not clear what threshold
should be used. The histogram, in Figure 5, is worse. Not one
PRI stands out in this example. The histogram is swamped by the
background of false pulse gaps generated by the interleaving of the
simple pulse sequences.

The TDOA histogram is sensitive to a parameter, the bin width.
The windowed Fourier transform depends on a parameterW , the
window length. The windowW must be sufficiently long to con-
tain several pulses of the longest PRI of interest.W , then, is too
long to detect short sequences of small PRI’s. A fixed window
width W gives optimum results in only a narrow range of PRI’s.
The wavelet transform, on the hand, depends only on a dimension-
less parameterM , which controls the relative resolution�T=T .
A single value ofM optimizes the window lengthsMT over the
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Figure 4: The periodogram of the interleaved set used in Figure 2.
The window length isW = 80. The peaks at PRF’s 0.833, 0.5 and
0.2 correspond to the PRI’s 1.2, 2.0 and 5.0 respectively.
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Figure 5: A Time Differences of Arrival (TDOA) histogram for
the interleaved set of Figure 2.
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Figure 6: Example of the operation of the detector for a simulation
of seven scanning radars. Detections are marked whereD(T; t) >
0:6.

whole applicable range ofT .
In Figure 3, the wavelet detector gives clear indication of a

wobulated pulse sequence. The periodogram and the histogram
would not. In the periodogram, with anyW greater than a fraction
of the wobulation period, the energy will smear over a band with
numerous undulations and peaks. The histogram would present a
band of raised bins rather than a single, distinct peak.

It is easy to demonstrate robustness of the wavelet detector
against missing pulses and jitter. A few missing pulses in an inter-
val of lengthMT will lower the peak in Figure 1. To drop below
a threshold of .6, forty per cent of the pulses must be lost. Time
jitter equal to a few percent ofT will make no practical difference
to the magnitude ofD(T; t) at the peak.

The computational requirements of our method are also con-
sidered and are shown to be modest: approximately one multipli-
cation per pulse per sampleT . A further advantage is that the
computations can be carried out in parallel inT and recursively in
time.

Figure 6 is a simulation of a practical application for radar PRI
detection with seven simulated scanning emitters. An off-the shelf
DSP processor can execute the algorithm, unparallelized, at 4,000
to 10,000 pulses per second.

All PRI values and scan times are correctly reported in the
example of Figure 6. Two groups of detections, appearing, att =
1:1 and 3.4 seconds whereT > 1 ms, are spurious. The spurious
detections are produced by the short bursts of PRI less than 0.05
ms in the much larger windowMT for T > 1 ms. Spurious
detections like these are avoided by restricting the range ofT or
by blanking small pulse intervals when searching the larger PRI’s.

4. CONCLUSION

A continuous wavelet transform, based on the mother wavelet of
Equation 2, provides a new method for detecting the character-
istic scale or periodsT of radar pulse sequences in interleaved

pulse streams. It improves on other established methods, includ-
ing TDOA histogramming, the periodogram and folding.

The transform provides a scale-invariant method for extracting
T . It depends only on one dimensionless integer parameter,M .
The parameterM controls the detector’s resolution and sets an
optimum window lengthMT for all scales ofT .

The transform is suited to searching large ranges ofT , rapidly.
It solves the problem of separating the fundamental peak of the de-
tection function from harmonics or sub-multiples of the peak. The
detector function suppresses background and it is robust against
missing pulses, jitter and cross interference between interleaved
pulse sequences.

The wavelet detector can be used in conjunction with param-
eter estimation methods to improve the robustness, speed and ac-
curacy of algorithms used to process interleaved radar pulse se-
quences for electronic surveillance purposes.

5. REFERENCES

[1] R. G. Wiley, Electronic Intelligence: The Interception of
Radar Signals. Norwood, Massachusetts: Artech House,
1985.

[2] N. J. Whittall, “Signal sorting in ESM systems,”IEE
Proceedings F (Radar and Signal Processing), vol. 132,
pp. 226–228, July 1985.

[3] H. K. Mardia, “Adaptive multi-dimensional clustering for
ESM,” IEE Colloquium on “Signal processing for ESM sys-
tems”, 1988.
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