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ABSTRACT

Performance of equalizers depends on the discrete time
model of the input signal and noise. The use of higher
sampling rate results in colored noise when the bandwidth
of the noise-limiting prefilter is not sufficiently large. It is
shown that the mean square error (MSE) performance of lin-
ear equalizers becomes sensitive to the decision delay when
the input noise is colored, and by using the appropriate de-
lay, a significant improvement in the MSE can be achieved.
This is in contrast to the behaviour observed in the white
noise case well known in the literature. This behaviour is
explained in time domain by showing the contributions to
the MSE from the columns of the channel convolution ma-
trix and the noise eigenvectors. In the frequency domain, it
is shown that the equalizer exploits the noise correlation to
improve the MSE.

1. INTRODUCTION

Fractionally spaced equalizers have a number of advantages
over symbol spaced equalizers including lower timing phase
sensitivity, reduced noise enhancement, and availability of
superior channel identification strategies due to cyclosta-
tionarity [1, 2, 3]. Most work on these equalizers begin with
a discrete time model, where the transmitted samples are
corrupted by additive white Gaussian noise samples. How-
ever, since fractionally spaced equalizers normally use a
noise-limiting filter (NLF), the bandwidth of this filter af-
fects the output noise and the noise samples are colored
in general. If an equalization algorithm uses a high sam-
pling rate (much higher than the Nyquist rate) and assumes
a white noise model, then the bandwidth of the analog pre-
filter must also be higher than the bandwidth of the signal.
This means allowing extra noise outside the signal band-
width to enter into the receiver so that the noise samples are
white. Alternatively, the noise power level can be kept low
by using a prefilter that allows only the signal bandwidth

to pass through. But in that case, higher than the Nyquist
sampling rate produces colored noise.

Although the white noise model has been thoroughly in-
vestigated in the literature, the same cannot be said about
colored noise. Colored noise affects the performance of
equalization algorithms which assume a white noise model.
Even if algorithms, such as the least mean squares (LMS)
algorithm and Constant Modulus Algorithm (CMA), do not
explicitly assume a white noise model, still their perfor-
mance is affected by colored noise. Therefore, it is appro-
priate to study the effects of colored noise on the perfor-
mance of linear equalizers.

It is known that in the white noise model, the MSE perfor-
mance remains reasonably unaffected by the choice of the
decision delay of the equalizer, except delays correspond-
ing to the ends of the equalizer. We show in this paper that
for colored noise case this is not true in general, and the
mean square error (MSE) is highly sensitive to the decision
delay of the equalizer so that even the best delay for the
white noise case may be the worst delay choice for colored
noise. By choosing the appropriate delay, significant gain
in MSE can be achieved. Our work provides strong motiva-
tion for the design of algorithms to obtain the best delay, for
example [5]. We explain this behaviour by considering the
dependence of MSE on the column vectors of the channel
convolution matrix and the noise eigenvectors. For certain
decision delays, favourable equalizer taps are obtained so
that these vectors contribute less to the MSE. The behaviour
is also explained in the frequency domain by showing that
the equalizer exploits the noise correlation and provides sig-
nificantly smaller MSE.

2. SYSTEM MODEL

Consider the transmission of a sequence ofM -ary symbols
fang, linearly modulating a transmit filterp(t). This signal
is distorted by a time-invariant channelc(t), and corrupted



by additive noisen(t) so that the received signal is

y(t) =
X
i

aih(t� iT ) + n(t) (1)

whereT denotes the symbol interval, andh(t) = p(t)
c(t)
is the convolution of the transmit filter and the multipath
channel impulse response. The impulse response is as-
sumed to be nonzero only over0 � t < LT . This sig-
nal is passed through a received analog prefilter of im-
pulse response,g(t), and sampled at the rate1=Tr, where
Tr = T=r, andr is an integer denoting the oversampling
rate. For communication systems with excess bandwidth,
that is with nonzero frequency components forj f j> 1=2T ,
a sampling rater > 1 may be needed for the sampled ob-
servations to be sufficient statistics in order to detectfaig
optimally.

3. LINEAR EQUALIZER

Let us denote the discrete time samples at the output of the
noise-limiting filter asfrng. If a linear equalizer of length
rN is used, then the output symbol spaced samples of the
equalizer are

�n = fH(Ha +w) (2)

wheref is the fractionally spaced equalizer tap vector,H

is the convolution matrix of the overall channel impulse re-
sponse, consisting of the transmit filterp(t), the multipath
channelc(t) and the receive prefilterg(t). The noisew is
the fractionally spaced noise sample vector at the output of
the filterg(t), and need not be necessarily white. The linear
equalizerf minimizes the MSE,E[j �n � an�d j

2], so that
the optimal solution for the equalizer taps is

f = (HHH +Rw)
�1hd (3)

wherehd denotes thedth column ofH, and it corresponds
to the set of achievable delays[0; N + L� 2]. d is referred
to as the decision delay. The noise correlation matrix is
Rw = E[wwH ].

4. SAMPLING RATE AND THE NOISE MODEL

Depending on the frequency response of the NLF, the frac-
tionally spaced noise samplesfwng may be white or col-
ored. The correlation between noise samples,rw(t1; t2), is
given by

rw(t1; t2) = E[w(t1)w
�(t2)]

= E[

Z 1

�1

Z 1

�1

g(t1 � � )g�(t2 � � 0)

n(t1)n(t2)d�d�
0]

=
N0

2

Z 1

�1

g(t1 � � )g(t2 � � )d�

For t2 � t1 = lTr ,

rw(t1; t2) = rw(lTr) =
N0

2

Z 1

�1

j G(f) j2 ej2�flTrdf

(4)

If g(t) is a root-raised cosine (RRC) filter,j G(f) j2 is a
raised cosine filter frequency response. Hence the RHS in-
tegral of (4) is the time-domain expression for the raised
cosine filter [4].

Many equalization algorithms are based on explicit esti-
mation of the channel impulse response. Many blind algo-
rithms too estimate the channel impulse response and then
perform equalization [2, 6]. If the equalizer taps are com-
puted from the estimated channel impulse response, then
three different cases can be considered.

Case 1: The algorithm assumes white noise model and
the true noise samples are white. In that case the MSE be-
comes

MSE= 1� hHd (HHH + �2wI)
�1hd:

The computation of the equalizer taps by this approach re-
quires an estimate of the noise variance�2w.

Case 2: The algorithm assumes colored noise model, and
the true noise samples are colored. The MSE in this case is

MSE= 1� hHd (HHH +Rw)
�1hd:

Note that the computation of the equalizer taps by this
method requires an estimate of the noise correlation matrix
Rw.

Case 3: The algoritm assumes white noise model, but the
true noise samples are colored. The MSE then becomes

MSE= E[j fH(Ha +w)� an�d j
2]

Usingf = (HHH + �2wI)
�1hd, where�2w is the estimated

noise variance assuming white noise model, the MSE ex-
pression can be simplified to

MSE = 1� hHd (HHH + �2wI)
�1hd + hHd (HHH

+�2wI)
�1(Rw + �2wI)(HH

H + �2wI)
�1hd

The fourth case of assuming a colored noise model when
the true noise samples are white is not important from a
practical viewpoint.

4.1. Dependence on delay

The decision delay,d, plays an important role in the MSE
of the equalizer. The received sample vectory may be ex-
pressed as

y = Ha +w = ~H~a



where ~H = [H, v1; � � � ;vrN ], and~a = [a; b1; � � � ; brN ].
The vectorsfvig are the eigenvectors of the correlation ma-
trix Rw, andfbig are zero mean uncorrelated random vari-
ables (KL expansion). Then the MSE becomes

MSE= E[j fH ~H~a� an�d j
2]

Assuming the elements of~a to be uncorrelated, the MSE
becomes

MSE=j 1� fHhd j
2 +

KX
i=0;i 6=d

j fHhi j
2 +

rNX
i=1

�i j f
Hvi j

2

(5)

whereK = L+N�2. The MSE consists of three terms: (i)
the first termj 1� fHhd j

2 represents the power of the off-
set of the equalized symbol from unity. (ii) the second termPK

i=0;i6=d j fHhi j
2 is the contribution to the MSE due to

residual ISI, and (iii) the third term
PrN

i=1 �i j f
Hvi j

2 con-
tains contribution from noise. Since each term is positive,
we want each to be minimum for the MSE to be minimum.

Assuming the matrixHHH +Rw to be positive definite,
the Cholesky decomposition providesHHH+Rw = LLH ,
so that the contribution to the MSE due to theith column
(i 6= d) of H is

j fHhi j
2=j (�Hhd)

H (�Hhi) j
2 (6)

where� = L�1. Similarly the contribution due to them th
noise eigenvector is

�m j fHhK+m j2= �m j (�Hhd)
H(�Hhi) j

2 (7)

Equation (5) shows that the contribution to the MSE comes
from all the columns of~H. Equations (6) and (7) show
that the contribution to the MSE from theith column of ~H
matrix comes through an inner product with columnhd (as-
sociated with delayd) in a transformed space. For colored
noise, the noise eigenvalues are not equal along the eigen-
vectors. Therefore, for some values ofd, the inner prod-
uct of the dominant eigenvectors withhd in the transformed
space may contribute large values to the MSE. For some
other values ofd, the MSE may be very small.

5. NUMERICAL RESULTS AND DISCUSSION

The MSE performance of linear equalizers in the presence
of white and colored noise is studied. The trasmit filterp(t)
is an RRC filterz�(t) with roll-off factor � = 0:35. It is
truncated to 8 symbol periods. The multipath channelc(t)
is

c(t) = z�(t) � 0:7z�(t�
11T

12
) (8)

The signal-to-noise ratio (SNR), i.e., the bit energy to nor-
malized noise spectral density isEb=N0, whereEb =

P
l j

h(lTr) j
2, andN0 is the noise power spectral density at the

input to the prefilter. The receive filterg(t) is also an RRC
filter with � = 0:35. Note that if the transmitted signal
is bandlimited toj f j� (1 � �)=T , the use of a receive
RRC filter bandlimited to the same frequency results in col-
ored noise in general. To obtain white noise samples, the
receive RRC filter should have a roll-off overr=2T , thus,
passing excess noise into the receiver. The noise samples
are assumed to have passed through a perfect RRC filter,
so that the noise correlation matrix can be directly obtained
from (4). The equalizer consists of 24 fractionally spaced
taps. Figure 1 shows the MSE versus delayd at an SNR
of 15 dB. For white noise, the MSE is not very sensitive
in the middle region of the allowed delays. However, for
colored noise, the MSE becomes very sensitive to delayd.
At sampling rater = 4, all delays except 5 and 6 produce
significantly smaller MSE. This behaviour is peculiar from
the white noise case where delays 5 and 6 provide very
good MSE. This behaviour can be explained by reference
to Fig.2, where contributions to the MSE from columnshi,
and noise eigenvectorsvi are shown. The horizontal axis
shows the vector number and the vertical axis shows the
contribution calculated from (5), (6), (7). For this numerical
example, the first 12 vectors representhi, and the remain-
ing 24 vectors correspond to the noise eigenvectors with the
corresponding eigenvalues in decreasing order. The figure
shows that for delays 4 and 7 (small MSE), the contribu-
tion to the MSE due to the noise eigenvectors is very small,
whereas for delays 5 and 6, the contribution is high.

Figure 3 shows the frequency domain behaviour of the
channel and the equalizer in white and colored noise. Since
due to the low pass NLF, there is no noise outside the band-
width of the NLF, the equalizer has flexibility in its response
in this frequency range. Since any response in this range is
possible without noise enhancement1. The equalizer taps
in the white noise case does not have this flexibility, since
a large response at any frequency will also enhance noise.
Finally, whereas we do see an improvement for the subopti-
mal linear equalizer, the performance improvement with the
sampling rate is irrelevent for an optimal detector.

6. CONCLUSION

Because of the presence of the noise-limitingfilter, the noise
samples present at the input to a fractionally spaced equal-
izer are colored at higher sampling rates. This paper shows
that by exploiting this noise correlation, the MSE perfor-
mance of a linear equalizer can be significantly improved.
The performance of the equalizer depends strongly on the

1In practice, the equalizer taps may be designed by considering the
presence of a small amount of noise.
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Figure 1: MSE at different delays
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Figure 2: The effect on MSE due to the columns of the chan-
nel convolution matrix and noise eigenvectors

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

fraction of sampling frequency

fr
eq

ue
nc

y 
re

sp
on

se

channel                   
equalizer (white noise)   
equalizer (coloured noise)

Figure 3: Frequency response of the channel and the equal-
izer

decision delay of detection, and the best delay for the white
noise model may be the worst delay choice in colored noise.
An explanation to this behaviour is presented in the time
domain through the relationship between the MSE and the
columns of the channel convolution matrix and the noise
eigenvectors. The frequency response shows that in the col-
ored noise case, the equalizer exploits the absence of noise
outside the signal bandwidth. The equalizer in a white noise
case does not have this flexibility.
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