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ABSTRACT

This paper examines the sensitivity of sound equalization
to source or microphone position changes in a reverber-
ant room. It is demonstrated that even small displacements
from the reference (equalization) point, of the order of a
tenth of the acoustic wavelength, can cause large degrada-
tions in the equalized room response. The general theory
developed in this paper, which implies that the sound equal-
ization in practical environments may be an ill-posed prob-
lem, is verified by the simulation results averaged over dif-
ferent source and microphone positions.

1. INTRODUCTION

In many applications, when the speech signal is transmit-
ted from source to microphone in a reverberant room, it is
necessary to use an inverse filter in order to compensate for
uneveness in the frequency response of the room, that is,
to make the transfer function of the system be (approxi-
mately) equal to the desired one. The majority of litera-
ture concerned with the sound equalization in reverberant
enclosures deals with the case where the source and mi-
crophone positions are assumed to be fixed, which signifi-
cantly simplifies the problem of reverberation removal from
the sound picked up by a microphone at some point in a
room. However, an effective technique for sound equaliza-
tion over a wider area in a room has not yet been found. Spa-
tial limitations to the standard equalization techniques for
speech dereverberation have been experimentally demon-
stated in [1].

In this paper we present an analysis of the robustness of
equalization in reverberant rooms, for changing source or
microphone positions. We are basically interested in the
spatial extent of the zone where a significant reverberation
reduction is obtained, which can be achieved when a sound
picked up by a single microphone is equalized using a fixed

room response inverse filter. For simplicity, only an ideal
case of an exact inverse response filter is considered; it is
understood that a similar analysis will apply to the approxi-
mate inverse.

In order to derive more general results, we make use of
the statistical-average properties of sound transmission in
rooms. The basic assumption of room statistics is that the
sound pressure is fairly uniformly distributed throughout the
room volume. For this to be true, the following conditions
must be met [2]:

1. The linear dimensions of the room must be large rela-
tive to the wavelength. This condition is easily satisfied
in almost all rooms, for frequencies of interest.

2. The average spacing of the resonance frequencies must
be smaller than one-third of their bandwidth. In a
room having a volumeV and reverberation timeT601,
this criterion can be met for all frequencies which
exceed the Schroeder large room frequency given by
fs = 2000(T60=V )1=2.

3. Both source and microphone are in the interior of a
room, at least a half-wavelength away from the walls.

Subject to these not very restrictive conditions, the fre-
quency response between the source and receiver may be
treated as a random function, the properties of which are de-
termined by the room volume, reverberation time and mag-
nitude of the sound pressure.

2. ROBUSTNESS RESULTS

We begin the theoretical consideration of our subject from
the following simplifying assumption:

1The reverberation timeT60 is the length of time for the sound intensity
level in a room to drop by60 dB after the source is shut off.



Let Gf be the complex steady-state frequency response
between the sound source and the receiver, andHf the fre-
quency response of an inverse filter designed to equalize
room response at the microphone point. We idealize our
problem by assuming that the transmission path between
the source and receiver is perfectly equalized, whereper-
fectmeans equalizing both the amplitudes and the phases of
the frequency response.

Moving the microphone will distort the frequency re-
sponse of the equalized transmission path. A quantitative
measure of this degradation can be based on a difference
between the two system’s transfer functions related to the
reference and the displacement point.

Definition 1: Let eGf be the frequency response between
the source and the receiver placed some distance away from
the equalization point, andHf an exact inverse ofGf . The
mean squared errorat frequencyf due to the displacement
of the receiving point is defined by

Wf = Efj eGfHf � 1j2g (1)

whereEf�g represents the expected value operator. The
expectation is taken with respect both to the distribution
of source locations (assumed uniform throughout the room
volume but at least a half-wavelength away from the walls)
and to the distribution of microphone positions (assumed
uniformly distributed on the sphere of radiusr centered at
the reference location). We note thatWf goes to zero at the
receiver reference point, whereeGf becomes equal toGf .

The definition given above can be generalized: multiplied
by the squared amplitude of the source signal at frequency
f , (1) estimates the power of an error signal which is the
difference between the equalizer output signal and desired
(source) signal.

Before going further, we define the quantity called the
wavenumber, k, ask = 2�=� = 2�f=c, where� is the
acoustic wavelength, andc is the velocity of sound, gener-
ally specified at21�C as344 m/s.

Theorem 1 Let R denote the distance from the source to
the reference location,r the displacement from the equal-
ization point,k the wavenumber, and the ratio of the di-
rect to the reverberant sound energy density at the reference
point. Then, the mean squared error at frequencyf is

Wf
�=

 R
2r ln jR+rR�r j+ 1

 + 1
� 2

sin(kr)

kr
+ 1 (2)

with  given by

 =
0:01V

�R2(1� ��)T60
(3)

where�� is the average absorption coefficient (the fraction
of incident acoustic power absorbed by the room surfaces),
andV is the volume of the room. �

In (3), absorption in the air is neglected for simplicity.
Proof: See the Appendix.
We make the following observations regarding this result:

1. The mean squared error depends merely on theratio
of the room volume and reverberation time. This prop-
erty generalizes the results derived herein to rooms of
different shapes, volumes, and reverberation times.

2. If the displacement from the equalization point is small
compared to the source-to-microphone distance, the
first term in (2) approaches1, meaning that direct field
component has negligible effect on the error signal2.
Because � 1=R2, the same will be valid at larger
distances from the source location, where (2) reduces
to a simpler formula:Wf

�= 2� 2 sin(kr)=(kr).

3. The greatest amount of distortion can be expected for
high frequencies, where the termsin(kr)=kr falls off
rapidly with increasing the distance from the equaliza-
tion point.

In analogy, the same results would be derived with the
microphone being fixed and source being moved from one
point to another.

3. SIMULATION EXAMPLE

In order to validate the theoretical results derived in the pre-
ceding section, simulations have been performed for several
rooms of different volumes and reverberation times, over a
wide range of source-microphone positions. In calculating
the frequency response of the room (source-to-microphone
transfer function), we have used the image method [6].

In the example we present here, a rectangular room with
dimensions6:4 m, 5 m, and4 m is considered. We as-
sume that the reverberation time does not change with the
frequency, and that all walls of the room have the same
reflection coefficient� (the average absorption coefficient
�� = 1� �2).

First we calculated frequency response at some fixed dis-
tance from the source placed in the interior of the room.
Then, moving the microphone in an arbitrary direction, we
calculated the error at several points along a straight path of
one wavelength (see (1)). The200 simulations with differ-
ent source-microphone positions were made, with both the
source and microphone being displaced randomly between
the runs. The average power of the error signal at frequency
f was estimated by

Wf =
1

N

NX
n=1

�� eGfn

Gfn

� 1
��2 (4)

2This can be easily verified by using the l’Hˆopital’s rule, according to
which: limr!0[(R=2r) ln j(R+ r)=(R� r)j] = limr!0[(@(ln j(R+
r)=(R� r)j)=@r)=(@(2r=R)=@r)] = 1.
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Figure 1: Reverberant power as a function of displacement
from the equalization point, at frequency2000 Hz. The
room dimensions are(6:4 � 5 � 4) m3, wall reflection co-
efficients0:84, and direct-to-reverberant energy ratio�8:4
dB (source-to-microphone distanceR = 3 m).

whereGfn denotes the complex room response at the ref-

erence location (associated with thenth simulation), eGfn

is the room response at some distancer from the reference
point, andN = 200.

In Fig. 1, the solid line represents the averaged trend of
the error signal for many source and microphone locations;
such an average is in very good agreement with what one
calculates from (2) (dashed line). These results, as well
as the other simulation results not presented in this paper,
demonstrate that the zone of equalization, where more than
10 dB of reverberation reduction is obtained, is a sphere of
a diameter of about�=7, centered at the reference point.

4. CONCLUSION

The purpose of this paper was to investigate the robustness
of equalization using a room response inverse filter, with
respect to source or microphone location changes. The the-
ory and simulation results presented above demonstrate that
standard equalization techniques are merely a point-wise
solution which not only fails in removing unwanted rever-
beration but may even further degrade speech quality away
from the equalization point.

5. APPENDIX

We use the following relation between the frequency do-
main Green’s function (frequency response function),Gf ,
and the complex sound pressure at some point in a room,

P f [5, pages 555,591]:

P f = �ik�cSfGf (5)

where factors� andSf , which will be defined later in this
Appendix, are independent of the receiver location. Thus,
the equation (1) can be written in the form

Wf = E

( eP f
eP �
f

P fP
�
f

�
eP f

P f

�
eP �
f

P �
f

+ 1

)
(6)

where the symbol� represents the complex conjugate. Let
us first multiply and divide the second and the third term in
(6) byP �

f andP f , respectively.
To calculate the expectation of each term in the sum

in (6), we use the Taylor expansion [3, pages 246-7], ac-
cording to which ifg is the function ofrandom variables
with the mean valuesEfxjg = �xj, j = 1; : : : ; n, then
g(x1; x2; : : : ; xn), which we write asg(x) for brevity, can
be expressed in the form:g(x) = g(�x)+

Pn
j=1 g

0
j(�x)(xj �

�xj)+ĝ(x), whereĝ is a function of order 2, i.e., all its partial
derivatives up to the first order vanish at(�x1; �x2; : : : ; �xn).
Thus, to the first order of approximation,Efg(x)g = g(�x).
With this approximation, we find

Wf
�= Ef eP f

eP�
fg

EfP fP
�
fg

� Ef eP fP
�
fg

EfP fP
�
fg

� Ef eP�
fP fg

EfP�
fP fg

+ 1: (7)

The total sound pressure at frequencyf , at some point away
from the source, may be expressed as:P f = P fd + P fr ,
whereP fd andP fr are the direct and reverberant sound
pressure components, respectively. Under the same condi-
tions as in the Introduction, the direct and reverberant sound
pressure are uncorrelated at the point of observation and,
therefore, all cross terms in the sum in (7) will vanish, leav-
ing only the following factors

Wf
�= Ef eP fd

eP�
fd + eP fr

eP �
frg

EfP fdP
�
fd + P frP

�
frg

� Ef eP fdP
�
fd + eP frP

�
frg

EfP fdP
�
fd + P frP

�
frg

� EfP fd
eP�
fd + P fr

eP �
frg

EfP fdP
�
fd + P frP

�
frg

+ 1: (8)

The reverberant-field mean-square pressure can be de-
fined as

EfP frP
�
frg = Ef eP fr

eP�
frg =

4�c�(1 � ��)

S ��
(9)

where� is the power of the acoustic source, and� is the
density of air in the room.

With (3) (see [4, page 582]) and (9), returning to (8), we



find

Wf
�=

Ef eP fd
eP �
fdg S ��

4�c�(1���) + 1

 + 1

�
Ef eP fdP

�
fdg S ��

4�c�(1���) +
Ef eP frP

�

frg
EfP frP

�

frg
 + 1

�
EfP fd

eP �
fdg S ��

4�c�(1���) +
EfP fr

eP
�

frg
EfP frP

�

frg
 + 1

+ 1:(10)

Next we calculateEf eP fd
eP�
fdg starting from the following

equations: The free-space Green’s function is defined as

g
f
=

1

4�R
eikR: (11)

At a distanceR from the source point, for a given source
strengthSf , the direct sound pressure is of the form [5, page
311]

P fd = �ik�cSfgf : (12)

Some distancer away from the equalization point, at an an-
gle � to the reference direction, the sound pressure is given
by

eP fd = �ik�cSfegf : (13)

We may write thus [5, page 582]

Ef eP fd
eP�
fdg = (k�c)2jSf j2Efegfeg�fg = 4��c�Efeg

f
eg�
f
g:

(14)

The functioneg
f

in (14) can be defined by using the cosine
law

eg
f
=

1

4�(R2 + r2 � 2Rr cos �)1=2
eik(R

2+r2�2Rr cos �)1=2 :

(15)

Because all directions of the microphone displacement are
assumed to be equally probable over the solid angle,cos �
is distributed uniformly over the interval�1 to+1, and the
expectation ofeg

f
eg�
f

can be found as:

Efeg
f
eg�
f
g = 1

2

Z 1

�1

d(cos �)

(4�)2(R2 + r2 � 2Rr cos �)

=
1

(4�)22Rr
ln
��R+ r

R� r

��: (16)

With (14) and (16), one obtains:

Ef eP fd
eP �
fdg =

��c

4�R2

R

2r
ln
��R+ r

R� r

��: (17)

Having determined the first term in (10), we pro-
ceed with the similar mathematical analysis to determine
Ef eP fdP

�
fdg. In this case, we find

Efeg
f
g�
f
g = 1

2

Z 1

�1

eik(
p
R2+r2�2Rr cos ��R)d(cos �)

(4�)2R
p
R2 + r2 � 2Rr cos �

=
1

(4�R)2
sin(kr)

kr
(18)

leading to

Ef eP fdP
�
fdg =

��c

4�R2

sin(kr)

kr
: (19)

Finally, returning again to the expression (10), we utilize the
well-known formula for the normalized correlation function
of the complex sound pressure amplitude at two points sep-
arated by a distancer in space [4]

Ef eP frP
�
frg

EfP frP
�
frg

=
sin(kr)

kr
: (20)

Because the second term in (10) turns out to be a real func-
tion of r, the same result must be valid for the third term in
(10). These results can now be inserted in (10) to obtain an
approximation solution to the power of the error signal at
single frequency.
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