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ABSTRACT

This work considers the implementation of recursive iden-
tification algorithms based on hyperstability concepts with
polyphase structures. It is shown that the SPR condition
required for convergence of these schemes can always be
met by using a sufficiently high polyphase expansion fac-
tor M . For a given M , the degree of persistent excitation
required for parameter convergence is obtained. When a
priori knowledge about the unknown system is available, a
compensating filter can be designed to avoid the need for a
high M .

1. INTRODUCTION

Since the strictly positive real (SPR) character of the denomi-
nator of the unknown system, a requirement for convergence
of hyperstable adaptive IIR filtering algorithms [1, 2], need
not be fulfilled in practice, many suggestions have been
made in the last years in order to avoid this drawback. In
[3] the use of an overparameterized model was suggested,
claiming that a sufficiently high degree of overparameteri-
zation would ensure convergence of the output error to zero.
However, convergence of the parameter vector need not take
place, due to the non-uniqueness in the representation of the
system. On the other hand, if pole-zero cancellations are
still used (in order to force the SPR condition) but in such
a way that the model obtained after convergence is unique,
then the previous problem disappears. This can be done by
using a polyphase structure for the filter. Such structures
have been proposed in [4] to improve convergence speed of
gradient-based adaptive IIR filters. We are concerned here
about the SPR condition and persistent excitation require-
ments that must apply when the polyphase form is used
for hyperstable algorithms: it will be shown that the for-
mer can always be fulfilled for an appropriate choice of the
polyphase expansion factor (an inappropriate choice may
yield a non-SPR polynomial even if the original polynomial
was SPR). The price to pay is a linear increase in the per-
sistent excitation degree of the input signal. Also, for very
high expansion factors, convergence speed decreases due to

the existence of many adaptive parameters. If some a priori
knowledge about the pole locations of the plant is available,
the expansion factor can be reduced by properly designing
a compensating filter.

2. ALGORITHM WITH POLYPHASE STRUCTURE

Consider a plant input-output equation

y(n) = H(z)u(n) =
B�(z)

A�(z)
u(n);

where B�(z) and A�(z) are coprime polynomials of degree
N in z�1. Now, if pi, i = 1; 2; : : :N are the roots of A�(z),
define the polynomial

P (z) =

NY
i=1

M�1Y
k=1

(1� pie
j 2�k
M z�1);

where M is the polyphase expansion factor. We can intro-
duce N(M � 1) pole-zero cancellations in the plant model
by means of P (z) to obtain

H(z) =
B�(z)P (z)

A�(z)P (z)
=

F�(z)

D�(zM )
; (1)

with F�(z) = B�(z)P (z) a polynomial of degree NM and

D�(z) = 1 + d�1z
�1 + � � �+ d�Nz

�N :

The representation ofH(z) as in (1) is known as theM -fold
polyphase form. Note that this form is unique since the
factor P (z) is uniquely determined by H(z).

With this structure for the plant, one can use a similar
form for the adaptive model:

Ĥ(z) =
F (z)

D(zM )
=

PNM

i=0 fiz
�i

1 +
PN

j=1 djz
�jM

;

and now an adaptive identification algorithm can be devel-
oped. Define the parameter vector �n and the regressor



vector Xn (both of size (M + 1)N + 1) as follows, with i
ranging from 0 to NM and j from 1 to N :

�n = [ fi(n) j �dj(n) ]t;

Xn = [ u(n� i) j x(n� jM) ]t;

where x(n) is the a posteriori estimate given by x(n) =
�tn+1Xn. The a posteriori error is

eo(n) = [y(n)� x(n)] +

RX
k=1

ck[y(n� k)� x(n� k)];

where c1, . . . cR are suitable constants. The corresponding
a priori quantities are the estimate ŷ(n) = �tnXn and the
error

e(n) = [y(n)� ŷ(n)] +

RX
k=1

ck[y(n� k)� x(n� k)]:

With this, the adaptive algorithm can be written as

�n+1 = �n +
�Xne(n)

1 + �Xt
nXn

; (2)

with � > 0 a suitable stepsize.

Lemma 1 Let C(z) = 1 +
PR

k=1 ckz
�k. If the trans-

fer function C(z)=D�(z
M ) is SPR, i.e. if the system

C(z)=D�(z
M ) is stable and causal and

Re
C(ej!)

D�(ej!M )
> 0 8 !;

then the algorithm (2) is asymptotically stable, that is,
eo(n)! 0 as n!1.

The proof can be found in [5]. Note that the compensat-
ing filter C(z), which is chosen by the designer so that
C(z)=D�(z

M ) is SPR, can be IIR, i.e. R =1.
The important point is that the transfer function that

should be made SPR is C(z)=D�(z
M ). Assume for the

moment that C(z) = 1. The SPR condition on 1=D�(z
M )

is equivalent to the SPR condition on 1=D�(z). Note that
the roots of D�(z) are pMi ; if H(z) is stable, then jpij < 1
and as M increases, jpMi j ! 0. This means that for high
M , D�(z) can be made SPR. For example, if H(z) is the
discrete-time transfer function obtained by oversampling
a continuous-time system, the roots pi will tend to cluster
around z = 1 in the complex plane. Under these conditions,
1=A�(z) is very unlikely to be SPR. The transformation
pi ! pMi tends to pull the roots away from this region.

Although the hyperstability theorem guarantees conver-
gence of the output error eo(n) to zero if the SPR require-
ment is met, it does not guarantee parameter convergence to

the true vector ��. For this to hold, persistent excitation (PE)
conditions on the input signal are needed, which also gives
exponential convergence of the adaptive algorithm [6]. In
the standard algorithm [i.e. (2) withM = 1], this is satisfied
if the power spectral density of the input signal u is nonzero
at least at 2N+1 different frequencies in [0; 2�) [6]. For the
polyphase structure, the number of nonzero frequencies in
u must be at least (M +1)N +1 (the number of parameters
in the adaptive model). This can be obtained using the same
arguments as in [6]; see also [5]. This number increases
linearly with M , so the price to pay for alleviating the SPR
condition is a stronger PE requirement in the input signal.

3. SIMPLIFIED ALGORITHM

The algorithm above converges globally (under fulfillment
of the SPR and PE conditions) for all � > 0. However, the
plant output y was assumed to be noise free. Usually this is
not the case, and � has to be kept small in order to cope with
the noise in eo. Under this ‘slow adaptation’ the algorithm
can be simplified [1, 7]:

�n+1 = �n + �Xne(n); (3)

with Xn now simply given by

Xn = [ u(n� i) j ŷ(n� jM) ]t:

As before, ŷ(n) = �tnXn, and e(n) = C(z)[y(n)� ŷ(n)].

Again, it can be easily verified that for a fixed parameter
vector �,

e(n) =
C(z)

D�(zM )
s(n) + C(z)�(n);

with s(n) = ~�tnXn, ~�n = �� � �n and �(n) the noise
component in the plant output. For slow adaptation, we can
link the convergence properties of the algorithm to those
of an associated ordinary differential equation (ODE) [2];
assuming that � is zero-mean and uncorrelated with u, for
the algorithm (3) this ODE turns out to be

d~�

dt
= �R~�;

with

R = E

�
Xn �

C(z)

D�(zM )
Xt
n

�
:

The signals in R are functions of ~� and therefore so is R
itself.

Lemma 2 If C(z)=D�(z
M ) is SPR, the input signal u is

persistently exciting of degree at least 2MN +1, and Ĥ(z)
has degree NM or N , thenR is positive definite.

See [5] for a proof. Thus under these conditions, the ODE
associated to the simplified algorithm is globally convergent.



4. ROBUST DESIGN

As we have seen, the SPR condition for the algorithms (2)
and (3) is given on the transfer functionC(z)=D�(z

M ), with
D�(z

M ) =
QN

i=1(1 � pMi z�M). Suppose that C(z) = 1
and that � < 1 is an upper bound on the magnitude of the
plant poles. Then a sufficiently high M will make D�(z

M )
SPR [5]:

M >
log(sin �

2N )

log�
: (4)

The use of an appropriate compensator C(z) may relax the
bound on M . If some a priori knowledge about the pole
locations of the plant is available, we can try the design of
C(z) such that C(z)=A�(z) is SPR, for M = 1. Thus,
we consider an uncertain set A(z) for A�(z), built by all
the polynomials of degree N with all their roots in some
uncertainty region 
 inside the unit circle. The robust SPR
problem, presented in [8], is defined as finding C(z) such
that C(z)=A�(z) is SPR for all A�(z) 2 A(z). For certain
types of regions 
, the phase of A�(z) 2 A(z), for z on
the unit circle, is bounded above and below by the phase of
a finite number of polynomials, A1(z); � � � ; Ar(z), known
as extreme polynomials. Thus, the search for the solution
of the robust SPR problem, C(z), is reduced to finding
C(z) such that C(z)=A1(z); � � � ; C(z)=Ar(z) are SPR. The
necessary and sufficient condition for the existence of such
C(z) was presented in [8]: There exists C(z) such that
C(z)=A1(z); � � � ; C(z)=Ar(z) are SPR if and only if for all
! in [0; 2�)

max
i

[arg fAi(ej!)g]�min
i
[arg fAi(ej!)g] < �: (5)

As an example, if 
 is a circle centered at c real, and
with radius �, then it has two extreme polynomials, namely,
A1(z) = (1�(c��)z�1)N andA2(z) = (1�(c+�)z�1)N

[10]. If M > 1, we can design a transfer function G(z) to
make the uncertain set D(z) SPR, where

D(z) =

(
D�(z); D�(z) =

NY
i=1

(1� pMi z�1); pi 2 


)
:

By Lemma 1, and considering again that a transfer function
P (zM ) is SPR if and only if P (z) is SPR, C(z) = G(zM )
must be the compensator used in the algorithm, with G(z)
such that G(z)=D�(z) is SPR for all D�(z) in D(z). For
example, if 
 denotes a circle centered at the origin with
radius �, the bound on M such that the family D(z) verifies
(5) is [5]

M >
log(tan �

2N )

log�
; (6)

lower than the bound in (4).

Next we present a procedure to design the appropriate
compensatorC(z) for uncertainty sets D(zM ), where D(z)
can be described by two extreme polynomials D1(z) and
D2(z), and M denotes the polyphase factor. Notice that
D(z) = A(z) for M = 1. First we design G(z) such that
G(z)=D1(z) and G(z)=D2(z) are simultaneously SPR. If
we write

Q(z) = D1(z)G(z
�1) +D1(z

�1)G(z);

R(z) = D2(z)G(z
�1) +D2(z

�1)G(z);

after some straightforward computations G(z) can be ex-
pressed in terms of R(z) and Q(z) as

G(z) =
R(z)D1(z)�Q(z)D2(z)

T (z)
;

with T (z) = D1(z)D2(z
�1) � D2(z)D1(z

�1). The sign

of Q(z) is the same as the sign of Re
n

G(z)
D1(z)

o
on the unit

circle; an identical consideration can be made for R(z) and
D2(z). Therefore,G(z) can be computed by findingQ(z) =
Q(z�1) and R(z) = R(z�1) positive on the unit circle and
such that

R(z)D1(z)�Q(z)D2(z) = 0

at the roots of T (z) on the unit circle and outside the unit
circle. The roots of T (z) outside the unit circle can be
readily included in R(z) and Q(z) (and by symmetry, the
roots inside the unit circle). However, given the positivity
of R(ej!) and Q(ej!) for all !, the zeros of T (z) on the
unit circle must be canceled out by solving the following
interpolation problem:

R(z)

Q(z)
=
D2(z)

D1(z)

at the roots of T (z) on the unit circle. With D1(z) =
(1 � �Mz�1)N and D2(z) = (1 + �Mz�1)N , those roots
are only two, namely, z = 1 and z = �1. The interpolation
can be carried out by making use of the algorithm presented
in [9], and the degree of C(z) = G(zM ) will be NM [5].

5. SIMULATIONS

Let us consider an identification setting with a second-
order plant and with a colored input u(n) taken as the out-
put of the filter S(z) = 1=(1 � 1:2z�1 + 0:7z�2), when
driven with zero mean, unit variance white noise. The
poles are known to lie in a disk 
 centered at the ori-
gin, with radius 0.95. According to (4), the smallest M
ensuring convergence for any set of poles in 
 is 7, if
C(z) = 1. However, for M = 1, we can obtain a ro-
bust compensator C(z), following the steps exposed above:
C(z) = 1+0:0974z�1�0:9025z�2. The true plant consid-
ered wasH(z) = (1+2z�1+z�2)=(1�1:8z�1+0:9z�2).
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Figure 1: Trajectories of the reflection coefficients of the
adaptive filter. (a)M = 1,C(z) = 1, (b)M = 2,C(z) = 1,
(c) M = 3, C(z) = 1, and (d) M = 1, C(z) = 1 +
0:0974z�1 � 0:9025z�2. The stepsizes for the recursive
and non-recursive part were 10�6 and 10�5 respectively.

The simplified version of the algorithm was used, with the
recursive part implemented as a two-multiplier lattice to
allow for stability monitoring, following the approach of
[11] (Note that the reflection coefficients of D(zM ) are all
zero except kM ; k2M ; � � � ; kNM ). Figure 1 shows the re-
sults of the polyphase implementation for several values of
M with C(z) = 1. The compensator computed above is
also implemented with M = 1. For M = 1, C(z) = 1,
ill-convergence is observed, due to the fact that the plant is
not SPR. For M = 2, C(z) = 1, the corresponding D�(z)
is not SPR yet; however, the range of frequencies in which
its real part is negative is smaller than that of A�(z) and
convergence is achieved anyway. For M = 3, C(z) = 1
and M = 1, C(z) = 1 + 0:0974z�1 � 0:9025z�2 the cor-
responding transfer functions are SPR and convergence is
guaranteed for any persistently exciting input signal.

6. CONCLUSIONS

An analysis of hyperstable polyphase adaptive IIR filters has
been performed. By appropriately choosing the polyphase
expansion factor M , the SPR condition required for conver-
gence can be satisfied. M can be selected using a priori
information about the unknown plant poles in the form of
uncertainty regions. Two drawbacks of the polyphase rep-
resentation are a stronger PE requirement in the input signal

and a higher number of adaptive parameters. The former
can be overcome if the designer is able to choose the input
signal. The latter can be considerably alleviated through the
design of an appropriate compensating filter, with a proce-
dure which uses a priori information.
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