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ABSTRACT pose a generalized image adaptive variable dimensional vector

A vector enhancement of Said and Peariman’s Set Partitioning" /11 coding paradigm where different parts of an image can be
in Hierarchical Trees (SPIHT) methodology, named VSPIHT, ha oded as vectors of different sizes and different scales, with differ-

recently been proposed for embedded wavelet image compressi&iit "umber of set-partitioning passes, based on performance. This
While the VSPIHT algorithm works better than scalar SPIHT forensures that the algorithm works better than both scalar and vector

most images, a common vector dimension to use for coding gorithms taken separately. The coding choices for each portion is

entire image may not be optimal. Since statistics vary widely withiff@nsmitted to the decoder as side information.
an image, a greater efficiency can be achieved if different vector In the next section we present a brief overview of vector set
dimensions are used for coding the wavelet coefficients from diffepartitioning, with particular emphasis on the aspects relevant to this
ent portions of the image. We present a generalized methodologyork. In Section 3 we introduce the coding paradigm of the current
for developing a variable dimensional set partitioning coder, wherework. Section 4 presents the methodology used for making the var-
different parts of an image may be coded in different vectoringous coding choices, such as dimension, scale and number of
modes, with different scale factors, and upto different number gdasses. In section 5, the implementation details and coding results
passes. A Lagrangian rate-distortion criterion is used to make théor a scalar-vector coder are presented. Finally Section 6 concludes
optimum coding choices. Coding passes are made jointly for théae paper.
vectoring modes to produce an embedded bitstream.

2. OVERVIEW OF VECTOR SPIHT

1. INTRODUCTION We present a brief review of the aspects of VSPIHT relevant to

The wavelet transform, over the last few years, has grown tthis work, in particular, variable vector scaling and adaptive arith-
be a very effective means for transform coding of images [1]-[11]metic coding.
Using the conceptual foundations of zerotree prediction laid b .
Shapiro’s EZW [3] algorithm, Said and Pearlman [4] recently)é'1 Review of V_SPIHT . . .
developed a very efficient wavelet image compression scheme, In VSPIHT, first a dyadic wavelet decomposition of an image
called Set Partitioning in Hierarchical Tree¢SPIHT). In both IS performed. Then, the wavelet transform coefficients in each
schemes efficient scans are used to partially order the scalar waJd-* v Window in each subband are grouped to form a single vector
let coefficients by magnitude, followed by progressive refinemenp! dimensionHV , which forms the elemental quantization unit. In
on a bit-plane by bit-plane basis. The bitstream generated is petp_e course of m_ultlp_le set partitioning passes that follow, these vec-
fectly embedded. Xionet al [5] developed a complex space-fre- tors are classified into several classes using ordered lists QLIP,
quency quantization scheme based on [3] that uses a rate-distortig!S @nd QLSP, based on their vector magnitude in relation to cer-
criterion to jointly optimize zerotree quantization and scalar fre1@in decreasing threshol&, Ry, Ry, etc. All vectors with magni-
quency quantization. Several modifications (e.g. [6]) has beeft'de higher tha®, but less thai, j = 0,1,..R.1, constitute Class
attempted on both [3] and [4] for improved efficiency. Inspired by'" Each successive vector set-partitioning pass is associated with
the success of these scalar schemes, several researchers prop85&i°f these vector magnitude thresholds and yields a new set of
vector extensions of these algorithms. While the lattice VQ base¥ectors which have magnitudes higher than the threshold associated
schemes of Da Silva et. al. [7], Knipe et. al. [8], and Mukherjee an#ith the pass. The thresholds decrease from one pass to the next,
Mitra [9], are considerably generic, and have fast algorithms, thasually by a factor of 2. Vectors thus classified are gradually refined

trained VQ schemes [10], [11] are usually superior in rate-distorUsing class-specific successive refine_me_nt VQ systems. Multistage
tion performance. VQ or tree-structured VQ, or a combination of both, may be used

for designing the progressive refinement VQ systems. In this imple-

: tmentation we use VQ systems whose first stage is tree-structured,
than a scalar SPIHT coder for most images, the performance for ap 4 is followed by stages of multistage VQ.

arbitrary image depends heavily on the distribution of the wavelet
coefficients in it. For example, if the distribution of coefficients in a2.2 Variable Vector Scaling

particular portion of an image is such that only a few high magni-  In order to bring about a certain amount of uniformity in the
tude coefficients exist, a large number of vectors will have only ongyay images with varying dynamic range of wavelet coefficients are
or two high magnitude coefficients. VQ will therefore be unnecescoded with a common set of VQ systems, the wavelet vectors
sarily wasting too many bits on insignificant coefficients, and asormed by grouping are each scaled by a fagtbefore the set par-
such, the coding performance for the same portion with VSPIHT igitioning passes start. The factois given by:

likely to be worse than that with scalar SPIHT. In this work we pro- R
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whereR_, is a coding parameter greater tRgnand max(|| )

*  This work was supported by ONR grant NO0014-95-1-1214. denotes the maximum vector magnitude in an image [11]. The fac-




mation for the group is transmitted jointly using multiple adaptive
context models.

3. VARIABLE DIMENSIONAL SET PARTITIONING

The variable dimensional set partitioning methodology is con-
veniently explained by means of the diagrams in Figure 2. After a
dyadic wavelet decomposition of an image, the low-low subband,
where all the roots of the spatial orientation trees reside, is further
divided intoL superblocksof size M x N . Each such superblock
has asubimagein its region of support consisting of itself, the
M x N superblocks in the same position in the lowest subbands of
the LH, HL and HH orientations, along with all their descendants
(see Figure 2). Each of these superblock subimages can be further
divided inK ways into blocks of sizél, xV; i,= 0,1, ..., K-1 ,
as shown in Figure 2. A decision mechanism is used to decide for
each subimage, how, among the availablvays, the coefficients
in it will be grouped into vectors, for subsequent VSPIHT coding.

Figure 1. Decreasing magnitude thresholds to determine The encoder makes a decision based on rate distortion performance,
significance of vectors, and the corresponding classes. and transmits the decision map to the decoder as side information.
Additionally, for each of the subimages, a different scaling parame-
tor y is transmitted to the decoder with high precision for recontery;, i = 0,1,...L. —1, is transmitted to the decoder for best results.
struction. After scaling, all vectors are guaranteed to lie within &urthermore, the set partitioning passes on each subimage may be
HV -dimensional shell of radiuR ; . We find that the fad®y executed upto different stages, as we see later in this section. Note
has a significant impact on the rate distortion performance for a pathat different successive refinement systems are required to code
ticular image, and therefore, must be optimized for best perforthe subimages mapping to different vectoring modes.

mance. Each subimage rooted at the low-low superblock is essentially
In the light of the above scaling mechanism, it is appropriate tencoded or decoded by set-partitioning independent of others. To
consider the procedure used for generating the training vectors ftnis end, a parent-child relationship is defined for each subimage
designing the successive refinement VQs. A large set of trainingith the elemental coding units in each being the vectors obtained
images are wavelet transformed, and the coefficients are groupest grouping the coefficients therein in one of khevays. Depend-
appropriately to form vectors. For each image, the wavelet vectoiag on whether adaptive arithmetic coding for reducing the signifi-

are scaled by a factqr(cb) , given by: cance information is ysed or not, two types of vf'iriablg dimensior)al
1 (ch) _SPIHT must be_cor)3|dered. If adaptl\_/e arlthmetlc_: c_odlng for S|gn|f7
Yich) = Tt iy 2 icance information is not used, there is little restriction on the possi-
max([| )
whereR_ is a parameter. The scaled vectors for all images are T oo
partitionelof %R)to classes based on threshBji&;, R,, etc., and the tr:,\@gﬁted' Y S %;.E
candidates in each class are then used to design the correspondingmage EREAR

= 1O

VQ system. Note that the factét ; used during coding, and the . ' \

factor R_l(C used for training set generation are not necessarily ) \EQ |:|

the same, aFt)hough the threshdR§sR,, R,, etc. used for classifica- ) .

tion remain the same. UsualR,, is chosen as lessRhay).,, , ;! \ Region of s;’ppo”
but greater thaR, during coding. Figure 1 shows a typical classifi- . ' S“b'mt‘;"lgeko. ah
cation scenario inHV  -dimensional space. Note that the threshold ' superblock In the

. . - . \ low-I bband
R_; is variable during coding. ! ' |:| owrlow subban

2.3 Adaptive Arithmetic Coding ‘ :

To enhance the rate distortion performance of the VSPIHT
coder, two different kinds of adaptive arithmetic coding can be per- | |
formed [11]. The first is aimed at exploiting repetitive patterns in
images. When patterns repeat in an image, similar wavelet vectors -7 70
recur within the same subband. Similar vectors, when vector quan —"
tized coarsely using the first stage VQ, are likely to yield the same -z |:|

N -

encoding index. Adaptive arithmetic coding of the first stage VQ N Tl
. - s A

index for each class and each subband is used to exploit this redun
dancy. The adaptive arithmetic coder progressively assigns smalle NN _
and smaller codelengths to repeating indices. In order to allow the MxN Superblock : K vectoring
models to adapt fast enough to the underlying statistics, it is neces . choices
sary that the first stage VQ, which is also tree-structured, be Low-Low Subband N
designed with relatively few codevectors. A 0

The second kind of adaptive arithmetic coding is aimed at K-1 Hicx Vi
reducing the significance information bits associated with set parti-

tioning, in a manner similar to scalar SPIHT [4]. The vectors in the Figyre 2. Region of support of a block in low-low Subband, and various
lists are maintained in groups &fx 2 , and the significance infor- vectoring choices for it.
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ble ways in which theM x N superblocks may be divided intoment when the vectoring modes, scaling parameters, and humber of
smaller vector blocks. In this case, the parent child relationshipubpasses are appropriately chosen, the task of making the opti-
between vector blocks in the superblock subimage may be definedum decisions in the most general case, is by no means compua-
as in Figure 3(a) similar to that in [3]. On the other hand, if adaptivéionally inexpensive. We present an approach to making these
arithmetic coding is used to reduce significance information, groupsoding choices based on a Lagrangian rate-distortion optimization.

of 2x2 vectors must be maintained together. As such, in the | thjs approach, the best coding choice can only be based on
superblock, there must be an even number of vector blocks in bofje_gistortion performance upto the end of a specific number of
horizontal and vertical directions, for each of khpossible vector- subpasses. This is because, at the end of a subpass, all the choices
in_g modes. In_ this case, the_ parent child relationship is defir_wed asjBach a common state of completion, thereby providing a uniform
Figure 3(b) similar to that in [4]. Note that because of this conyatform for selecting the best. Let thesubimages, corresponding
straint, with adaptive arithmetic coding, the superblocks cannot bg, el superblocks the low-low band is divided into, be denoted as
too small. If arithmetic coding is not used, smaller superblocks cary i = 0,1, ..., L—1. The full imageX, therefore, is an aggregate
be used, thus allowing finer vectoring mode decisions. of the subimagesX = {Xo, X;, ....X__,} . Let the distortion and
Given the decision map and the associated set of scalingte achieved when a subimage is coded using vectoring mode
parametersy; for each of theL superblocks, the encoder and m;,, m; [ {0, 1 ..., K-1}, and scaling parametgr , withsub-
decoder operates as follows. First, each subimage is scaled apppasses, be given asD (x, m,y,p,) , an® [>g, m, Vi P;) ,
priately depending on the particular valugjadssociated with it. A respectively. Since all the subimages are coded independently,
set of ordered lists - QLIP, QLIS and QLSP - is then created foneglecting the rate savings due to adaptive arithmetic coding for
each of theK vectoring modes. The QLIP and QLIS lists for eachrepetitive patterns, the overall distortion and rate obtained for the
vectoring mode is initialized as in [4] with vectors of the appropri-entire imageX, given the set of moded = {m, m;,....m _;} ,

ate size taken from those subimages that are to be coded in tithe set of scaling parametefs = {y,v;, ...,Y _;} , and th
mode. After initialization, the set partitioning passes commence taumber of subpasses used= { p, p;, ..., P _;} , are given by:
produce an embedded bitstream. Each full pass is actually an aggre- L-1

gate ofK smaller passes, one for each coding mode. In practice, the D(X, M,T,P) = Z D (x, m,V,p), (3a)

K QLIPs are first processed one after another. Theid @EISs are L

processed. Finally, the refinement passes are conducted uskag the L-1

QLSPs. Therefore, each full pass can be viewed as consisting of 3 R(X MT,P) = z R(x, M, Vi, p)) (3b)

subpasses, the QLIP-subpass, the QLIS-subpass, and the QLSP- 5o
subpass. It is sometimes convenient to denote the progression of the Our task then is to optimiEe the parametdrs, andP for the

algorithm in finer units of subpasses, rather than passes. For exajg; ost possible distortioD (X, M, T, p)  under a rate constraint
ple, coding with 16 subpasses would mean coding with 5 full pass ie.R(X MT,p) <R, . Thé cclnnlstrained optimization problem
and only the QLIP-subpass of the 6th pass. Note that éach subim be readily tr’ansforr(rj]ed to an unconstrained problem using a
is essentially coded independently of the others in this approac agrangian parametér. The problem then becomes one of mini-
although the bit stream generated is mixed. mizing the lagrangian cost functiah( X, M, ", P) , given by:
Additional encoding flexibility can be incorporated if the num- J(X, M,T,P) = D(X,M,T,P) +AR(X MT,P) 4

on performance, rather than executing all the subpasses for all su?fffile Lagrangian cost function for each subimage be denoted:

images. The optimum number of subpasses for each subimdge, JO6 MY p) = DOG MY, ) +ARCG, My v, Py, (5)
=0,1,.L -1, is also transmitted to the decoder as side-informahe overall cost function can be written as the summation:
tion.

JIXMTP) = 5 J0xm, v, p) (6)

4. DECISION MAKING . Lo i=0 . .
Since the individual subimage cost functions are, for all practi-
While the paradigm described above is considerably flexibleal purposes, independent of each other, minimizing the overall
and generic, and holds potential for substantial coding improvecost function in the LHS of Eq. (6) is equivalent to minimizing each
Superblock  Vector block in superblock Superblock of the subimage cost functions on the RHS. In other words, the
i optimization procedure chooses:

{m,v,p} = (argmin [BOsmy,p)],i=01..,L-1 (7)

In practice, the scale factor is constrained to take on only cer-
tain discrete values from a small codebook. Each subimage is test
coded in all the available coding modes, with all the available scale
factors, upto all the possible number of subpasses. The rate and the
distortion obtained for each combination is computed. The combi-
nation that yields the lowest Lagrangian among the candidates is
eventually chosen as the optimum for that subimage. The decisions
thus made for each subimage is subsequently used in the actual
coding process to generate the bit stream. The valle duter-
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~ . ge/ B mines the relative importance given to rate and distortion during the
Superblock Subima optimization procedure. The higher the valueApthe lower the
(a) No adaptive arithmetic (b) Adaptive arithmetic coding final bit rate obtained, and vice versa. By adjusting the valie of
coding of significance bits for significance bits used using techniques like binary search, bit rates close to the desired,
(Vector blocks grouped as 2x2) Ry, can be obtained. Once the rate and distortions for each candi-

Figure 3. Parent-child relationships for two possible implementations  date {m;, y;, p;} combination for each subimagq is computed and



stored, the value df can be adjusted for the desired rate with little Lena Results
additional complexity. e 1 =

5. IMPLEMENTATION AND RESULTS T Veriable Dimensional SPIAT s

We implemented a scalar-vector set partitioning coder based

on the above principles. After a dyadic wavelet decomposition of g
an image, the low-low band is divided into superblocks of size g
4 x 4. The corresponding subimages can be coded either as scalars <
or as vectors of dimension 4 thx 2 blocks, yielding two possible sl
vectoring modes. Since adaptive arithmetic coding for significance
information is used, the scalars or vectors are maintained in groups sz
of 2x 2 in each subimage, with the parent child relation in each S N N N S S
being given as in Figure 3(b). Additionally, adaptive arithmetic 01 015 02 025 03 035 04 045 05 055 06
coding for repetitive patterns in the vector case is also used. The Barbara Results

class codebooks used for 4-dimensional vector quantization are Eapmewes e e T T
tree-structured at the first stage, followed by multistage VQ at the s vewrspT s
successive stages. The scalar mode is coded exactly as in [4], apart o
from variable scaling. The scale factgrfor each subimage is

decomposed as follows;, = yn; , wheyes given as in Eq. (1), R
andn); is chosen from a small codebook. The codebook fonike 2l A
may look something liked?, 63, 62, 01, 1,01, 62, 63}, with 0 = z /

1.25. A factora, defined as the ratio of the largest scalar magnitude
in the image, to the largest vector magnitude, is also computed. 27
Note that if alln; = 1, the maximum possible vector magnitude in
the scaled subimage would B, while the maximum possible

scalar magnitude would b@R ;. y is transmitted to the decoder %1 o5 0z oz o‘.sB_lsze‘srspixelo‘A 045 05 o055 os
Wlﬂl high precision, while is tran_smltted after coarse quantization Figure 4. Coding results for SPIHT, VSPIHT and Variable
to a . Thereafter, for each subimage, the codebook spalthe Dimensional SPIHT for Lena and Barbara Images
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