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ABSTRACT

We propose two batch versions of the constant modulus al-
gorithm in which a �xed block of samples is iteratively re-
used. The convergence rate of the algorithms is shown to be
very fast. The delay to which the algorithms converge can
be determined if the peak position of the initialized global
channel/equalizer response is known. These �xed window
CM algorithms are data e�cient, computationally inexpen-
sive and no step-size tuning is required. The e�ect of noise,
and the relationship between the converging delay and noise
enhancement are analyzed as well.

1. INTRODUCTION

Constant Modulus Algorithms (CMA) have been stud-
ied for years since the pioneering work of Godard [3]. Al-
though LMS adaptive implementations of CMA are simple
and robust to adverse channels, their drawbacks include
convergence to local minima, slow convergence, and un-
predictable performance variations due to ad hoc initializa-
tion. Under the assumption of multiple channels obtained
by either oversampling or the use of an antenna array, the
CMA approach has been extended to fractionally spaced or
spatio-temporal equalization in which an FIR �lter is able
to achieve perfect equalization. To achieve faster conver-
gence, the use of techniques from classical adaptive �lters,
such as replacing the training (desired) signal by a nonlinear
function of the equalizer output (e.g. a \sgn" function or
a tentative decision closest to the constellation), have been
found to be e�ective. Examples of fast CMA implemen-
tations are normalized CMA [5], LS-CMA [1], normalized
sliding window CMA [2], etc. Since the convergence rate
and the steady state error associated with each delay to
which the equalizer converges may be dramatically di�erent
depending on the �lter initialization, some re-initialization
schemes have also been proposed to seek the globally op-
timum equalizer [6]. Other recent developments for CMA
include its extension to the multiple user case and studies
of its behavior with noisy channels.

We propose two variations of CMA here. We call them
�xed window CMA (FWCMA) since they re-use a stored
�xed-length block of data. Since fourth order cumulants
are involved in CMA(2,2), its slow convergence is usually
ascribed to the involvement of HOS rather than to the re-
cursive LMS technique employed. The approximation of the
gradient by its instantaneous value is very inaccurate, espe-
cially when the cost function involves HOS. The algorithms
we present demonstrate that if a good approximation of the
gradient can be obtained by averaging over a block of data,

HOS-based algorithms can be data e�cient (30-100 sam-
ples are usually enough depending on how good the i.i.d.
assumption is). The proposed methods iteratively reuse
the data block to compute the gradient. Convergence is
shown to be quite fast, with only 2-8 iterations required de-
pending on the nature of the channel. The delay to which
the algorithm converges can be determined as a valuable
by-product if some information about the initialized global
system response is available. The iterations require no step
size adjustment which is critical to LMS-CMA. We also
analyze the behavior for noisy channels, especially the rela-
tionship between the noise ampli�cation e�ect of di�erent
delays and the eigenstructure of the channel matrix. Fi-
nally, several approaches are proposed for the multi-user
case where near-far problems may occur.

2. DATA MODEL

We consider a single user transmitting through multiple
channels which are obtained by either oversampling in time
or space. The data model can be written as

x(n) = [xMP (n) � � �xMP (n�E + 1)]T

=
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where M is the number of sensors, P is the oversam-
pling factor, xMP (n) is a vector containing samples from
all MP channels at time n, LT is the e�ective channel
length, E is the length of the temporal �lter for each sub-
channel, s(n) = [s(n) � � � s(n � E � L + 2)]T and n(n) =
[nTMP (n) � � �n

T
MP (n�E + 1)]T .

3. ALGORITHMS

Our problem is to �nd an equalizer w that restores the
constant modulus property of the signal. Denoting y as the
equalizer output y = wHx, the CMA(2,2) cost function is:

J(w) = E(1� jyj2)2 = E(1�wH
xx

H
w)2 : (2)

We introduce an approximation of the above cost function
as follows:

J(wk+1) = E(1�wH
k+1xx

H
wk)

2 (3)

where the subscript k indicates the iteration number and su-
perscript H denotes the complex conjugate transpose. This



approximation will be valid when wk is near convergence.
Writing wk+1 as wk +�wk, we observe that the minimum
of ( 3) may be achieved by searching for the weight incre-
ment �wk with minimum norm for which yk+1 is constant
modulus. This underlying idea is similar to that of the
normalized sliding window algorithms.

Denoting zk = xxHwk = y�kx, the Wiener solution to (3)
for wk+1 is simply

wk+1 =
h
E(zkz

H
k )
i�1

E(zk) = R�1
zz Rxxwk : (4)

We normalize the composite global system response, gHk
def
=

wH
k H so that kgkk

2
2 = 1. The reason for this will be clear

in the proof of the following theorem. The normalization
can be implemented as

wk+1 = wk+1=
q
wH
k+1HH

Hwk+1 � wk+1=
q
wH
k+1Rxxwk+1 :

(5)

We use \�" since Rxx asymptotically approaches HHH if
the source sequences are assumed to be i.i.d..
Theorem 1: If H is full column rank and the data se-

quence is i.i.d., then in the absence of noise the block adap-
tation rule of (4)-(5) will converge to the global solution in
which g has only one non-zero component. If the ith entry
jg0ij of g0 is the maximum element of the initial global re-
sponse, then jg0ij will converge to 1 (hence, the equalizer
will converge to delay i).
Proof: Note that Rzz = E(xxH jykj

2), where yk = wH
k x =

wH
k Hs = gHk s. From equation (4), we have

E(xxHjykj
2)wk+1 = Rxxwk

HE(jg
H
k sj

2
ss
H
)H

H
wk+1 = HH

H
wk

HEf(

qX
i=1

g�kisi)(

qX
i=1

gkis
�
i )ss

Hggk+1 = Hgk

H
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where gk = [gk1; � � � ; gkq]
T and q = col(H) = L + E � 1

is also the number of delays at which the source can be
recovered. We have used the normalization

Pq

i=1 jgkij
2 = 1,

as well as the following HOS property of MPSK (but not
BPSK) signals

E(sis
�
j sks

�
l ) =

�
1 i = j and k = l
0 otherwise :

If H is full column rank, gk+1 can be uniquely determined
as

gk+1 = R�1
g gk ;

since

Rg = diag(1� jgk1j
2; � � � ; 1� jgkqj

2) + gkg
H
k

def
= D + gkg

H
k :

From the matrix inversion lemma, we have

R�1
g = D�1 �

D�1gkg
H
k
D�1

1 + gH
k
D�1gk

and hence

gk+1 = R�1g gk =
D�1gk

1 + gH
k
D�1gk

= c[
gk1

1� jgk1j2
; � � � ;

gkq

1� jgkqj2
]T

where c = 1=(1 + gHk D
�1gk). The ratio between any pair

of the elements of g is thus

g(k+1)i

g(k+1)j

=
gki

gkj
�
1� jgkj j

2

1� jgkij2
; (6)

and we observe that after an iteration, the ratios between
the peak value of the previous global response and the oth-
ers increase. If jg0ij is initially the largest entry of g0, gk
will converge to the indicator vector ei and the convergence
speed is super fast. If the initialization g0 has k exactly
equal maximum elements, g will converge to an undesired
equilibrium where those k entries are equal and the rest are
zeros. However, these are saddle points and usually will not
occur in practice. The saddle point issue coincides with the
discussion in [7].

Some observations:

1. In the noiseless case, Rzz is rank de�cient and the in-
verse does not exist. However, this does not a�ect the
above proof since Rzz is moved to the other side of the
equation. In implementing the FWCMA �lter in high
SNR conditions, the inverse can be computed by an
appropriate regularization such as diagonal loading.

2. For real-valued signals (e.g., BPSK), we have

E(sis
�
j sks

�
l ) =

8<
:

1 i = j and k = l
1 i = k and j = l
0 otherwise :

(7)

It is easy to show that in this case, the o�-diagonal
entries of Rg are all doubled in value. Therefore, the
relationship between the elements of gk pre- and post-
iteration is

g(k+1)i

g(k+1)j

=
gki

gkj
�
1� 2jgkj j

2

1� 2jgkij2
;

and negative values appear when jgkij
2 > 1=2.

One simple remedy is to modify the normalization to
kgkk = 2. Another way will be discussed later.

In the following, we re-derive the above rule from a
stochastic gradient viewpoint, and obtain a simpler version
of FWCMA. We �rst look at the gradient of the CMA(2,2)
cost function which is

rJ
def
=

@J

@w�
= E

�
2(jyj2 � 1)

@(wHxxHw)

@w�

�

= 4Ef(jyj2 � 1)xxHwg

= 4E(jyj2xxH)w� 4E(xxH)w = 4Rzzw � 4Rxxw :

The stochastic steepest-descent update is of the form

wk+1 = wk �
1

2
�rJ : (8)

If � is a constant (or normalized) scalar step size, we get
the (normalized) LMS-CMA. If � is taken to be � = 1

2
R�1
zz ,

we obtain (4). If z is treated as the desired training signal
and the update is adaptively processed symbol-by-symbol,
this is actually the RLS algorithm. But ours is a batch



iteration rule. The previous algorithm (we call it FWCMA-
1) requires the inverse computation R�1

zz at every iteration,
but if we replace R�1

zz by R�1
xx , just one inverse is required.

Indeed, Rxx is a good approximation to Rzz when w is
near convergence. So, taking � = 1

2
R�1
xx into (8), we obtain

FWCMA-2:

wk+1 = 2wk � R�1
xxRzzwk

wk+1 � wk+1=
q
wH
k+1Rxxwk+1 (9)

Theorem 2: IfH is full column rank and the data sequence
is i.i.d., then in the absence of noise the block adaptation
rule of (9) will converge to the global solution in which g
has only one non-zero component. If jg0ij is the maximum
element of the initial response g0, this entry will converge
to 1 (hence, the equalizer will converge to delay i).
Proof: Taking the conjugate transpose of the above equa-
tion and right multiplying by H on both sides, we have

lgTk+1=2gTk � E(jgTk sj
2
g
T
k ss

H)HHR�1xxH

=2gTk � [gk1 +
X
i6=1

gk1jgkij
2; � � � ; gkq +

X
i6=1

gkq jgkij
2]

=[gk1jgk1j
2; � � � ; gkq jgkqj

2]

The ratio between any pair of the elements of g is
g(k+1)i

g(k+1)j
=

gkijgkij
2

gkj jgkj j
2 . If jg0ij is the maximum element of the initialized

response g0, this entry jg0ij will converge to 1. As discussed
previously, Rxx is rank de�cient in the noise-free case, but
diagonal loading or a pseudo-inverse could be used. In the
latter case, when H is a full column rank matrix, we have
HHRy

xxH � HH(HHH)yH = I, which is required in the
proof.

If we write � = �R�1
zz (or �R�1

xx ), it can be shown that
the range 0 < � � 1 leads to convergence for both al-
gorithms, while convergence is fastest for � ! 1. BPSK
signals require 0 < � � 1=2, as per the discussion above.

4. NOISE ANALYSIS

CMA(2,2) minimizes the modulus variation of the out-
put. The convergence of this intuitive cost function is
proved in the important work of Shalvi and Weinstein [7],
in which CMA(2,2) is shown to be equivalent to maximizing
the kurtosis under the constraint of uncorrelated outputs.
The convergence proof requires an i.i.d. source sequence, so
although CMA(2,2) appears to use the modulus property
of signal, it is actually attempting to restore the original
distribution of source. Indeed, restoring the source distri-
bution is the universal principle of blind equalization. This
explains why CMA is also successful in its extension to non-
CM signals. The equivalence of CMA(2,2) and Shalvi and
Weinstein's criterion suggest that we can use the Shalvi-
Weinstein criterion for our analysis. If Gaussian noise is
assumed, the noise mainly a�ects the second order statisti-
cal constraint, as follows:

1 =wH(HHH + �2nI)w

=wHUdiag(�21 + �2n; � � � ; �
2
q + �2n; �

2
n; � � � ; �

2
n)U

Hw

=jf1j
2(�21 + �2n) + � � �+ jfqj

2(�2q + �2n) + �2n

mX
i=q+1

jfij
2

=jf1j
2�21 + � � �+ jfqj

2�2q + �2nkwk
2

where fT = wHU , H = Um�m�m�qVq�q is the SVD of H,
and m = row(H); q = col(H). The singular values of H are
�1; � � � ; �q. The equalizer output is given by

wHx = wHHs+wHn

= wHU�V s+wHn

= fH�V s+wHn

= [�1f1; � � � ; �qfq]V s+wHn :

First of all, the squared norm of the global response is

kgk2 = k[�1f1; � � � ; �qfq]V k
2 = �21jf1j

2 + � � �+ �2qjfq j
2

= 1� �2nkwk
2 def
= �2 (10)

which is less than 1 when noise is present. Secondly, to
cancel ISI, we need to compensate for the unitary matrix V
which requires [�1f1; � � � ; �qfq] = �vHi ; (1 � i � q), where
V = [v1 : : :vq]. This step involves HOS and the Gaussian
noise e�ect is negligible. So, in e�ect, the noise perturbs
the global response around the noise-free norm (kgk2 = 1).
This perturbation is similar to that shown in the results of
[4].

The output SNR for delay i is

SNRi=
EjwTHsj2

EjwTnj2
=

�21jf1j
2 + � � �+ �2q jfqj

2

�2nkwk
2

=
�2

�2n
Pm

i=1 jfij
2

=
1

�2n(j
v1i
�1

j2 + � � �+ j
vqi
�q

j2 +
Pm

i=q+1 jfij
2=�2)

:

Obviously, we want �2 (� 1) to be as big as possible, which
is equivalent to making �2nkwk

2 as small as possible. If V
is an identity matrix (i.e., H is a matrix with orthogonal
rows), the output SNR can attain its approximate minimum
�2min

�2n
and maximum

�2max

�2n
. We can also see how the SNR

is determined by the column entries of V and the singular
values of H.

Since m�max � jjHjjF , then for a channel oversam-

pled by, for example, a factor of two, jjHjj2F = m(k~h1k
2 +

k~h2j
2)=2, and we have SNRmax � SNRin(k~h1k

2+k~h2j
2)=2;

i.e., the upper bound is bigger than half of the theoreti-
cal maximum SNR which is obtained by two �lters ideally
matched to the two sub-channels.

5. MULTIPLE USER CASE
With d users, the model becomes

x(n) = [H1 � � �Hd]

2
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where H 2 CMPE�d(E+L�1) is assumed to be full rank,
and assuming equal channel lengths for each user. From
Theorem 1, we notice that the initialization w0 = ei (i.e.,
g0 = H(i; :)) will recover s(n�j+1), where j is the position
of the peak value in the ith row of H. When there are
multiple users, it is di�cult to control the convergence to
the desired user (or delay) from some easy initialization,
especially when some users are much stronger than others.
Since all amplitude factors are absorbed into the H matrix,
a simple spike initialization will only recover the stronger
signals.

We propose three ways to overcome this problem. The
�rst is to use prewhitening, which amounts to transforming



H to a unitary matrix V (all the users are then of equal
\power"). Two drawbacks of this approach are the compu-
tational burden incurred by such a step, and the possible
increase in convergence time due to the fact that the peak
values of V may not be as large in relation to other matrix
entries. We also lose control over which user the algorithm
may converge to. The second approach is to project w
onto the space orthogonal to that spanned by previously
obtained w's, since the set of w vectors for di�erent users
(or delays) should be linearly independent. To prevent pre-
vious errors inw from a�ecting the next one, this projection
step can be omitted after several iterations. We have oc-
casionally observed an increase in convergence time due to
this projection step. The third approach is to successively
recover sources beginning with the strongest one, as in the
multistage CMA approach. The column ofH corresponding
to a given user at some delay can be estimated as

Ĥ(:; i) = E(X ŝ�) = E(HSŝ�) (12)

where ŝ is the sequence obtained from some spike initializa-
tion . The e�ect of this strong component can be suppressed
by subtracting it from the data: X � Ĥ(:; i)ŝT . We then
proceed to recover the next strongest user (or delay) from
the same initialization until all users are resolved. We can
also initialize with an identity matrix and resolve all strong
user(s) and delay(s). This option also has the advantage of
being able to choose the \best" delay and the processing is
completely parallel. We have found that this approach is
better than the other two.

6. SIMULATIONS

The single user case is simulated using FWCMA-2 (re-
sults for FWCMA-1 are similar) for a three-ray channel
whose impulse response is truncated by a window of length
4T. The simulation parameters wereM = 1 sensor, an over-
sampling factor of P = 2, and a temporal equalizer tap
length of E = 4. Thus H 2 C8�7, and the particular H
used had a condition number of cond(H) �= 22:1. The mod-
ulus of the coe�cients of the global response are plotted in
Figure 1 for SNR = 30dB and 8dB. A block of N = 100
samples was used and the results were averaged over 100
Monte-Carlo trials. We initialize with an identity matrix
I8�8, which amounts to initializing the global response with
the eight rows of H. We also plot in Figure 2 the averaged
modulus error (AME) performance corresponding to these
eight initializations (only the SNR = 30dB case is shown,
the SNR = 8dB case is very similar).

We make the following observations. First, the delays
to which the algorithm converges correspond to the column
positions of the peak values in those rows of H. Second,
the solutions for di�erent delays have di�erent steady-state
AME. Only \good" delays (2-5 in this case, 1,6,7 are \bad"
solutions) are resolved. Third, the convergence speed de-
pends on how the peak value of the initialized global re-
sponse stands out from the others (the left and right sub-
plots in Figure 2 show convergence for the same delays
with di�erent initializations). Finally, the noise perturba-
tion of the global response veri�es our theoretical analysis
(the peak of the global response is less than 1).
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