
SOME FAST SPEECH PROCESSING ALGORITHMS USING ALTIVEC TECHNOLOGY

Sanjay M. Joshi�

CSEE Dept, University of Maryland
Baltimore County, Baltimore, MD 21250,

USA. Email: joshi@ieee.org

Pradeep K. Dubey

IBM Research Division
Solutions Research Center, New Delhi,

India. Email: pkdubey@in.ibm.com

ABSTRACT

The AltiVec technology is a SIMD (Single Instruction
Multiple Data) extension to PowerPC architecture. It is
intended to provide architectural support for performance
improvement of various image and signal processing appli-
cations, including speech processing, on a general-purpose
processor implementation, such as, the PowerPC line of pr-
ocessors. In this paper we have implemented some of the
common speech processing algorithms on AltiVec architec-
ture. The algorithms discussed in this paper are autocorrela-
tion computation, linear prediction coefficients computation
via Levinson-Durbin method and Schur recursion, and part
of the GSM speech compression system. AltiVec obtained
significant speedups on all these algorithms, compared to
the scalar PowerPC implementation. We also found that ad-
ditional speedup was achievable by porting to new, more
SIMD-friendly algorithm.

1. INTRODUCTION

Motorola recently announced the AltiVec technology, a vec-
tor extension consisting of 162 new instructions, to the Pow-
erPC architecture1 [6, 7]. The AltiVec technology is very
general-purpose in nature. As a result, it is applicable across
a wide range of applications. It applies wherever there is
data parallelism to be exploited. This paper deals with op-
timizing some of the basic operations in speech processing
using AltiVec technology. The operations optimized are au-
tocorrelation and linear prediction coefficients computation.
As a practical example, we optimized a part of the GSM
compression system. The outline of this paper is as follows.
The following section is a brief overview of the AltiVec
technology. The next 3 sections discuss the optimizations.
The conclusions are drawn in the last section.

� Corresponding author
This work was done at IBM T. J. Watson Research Cen-

ter, NY
1AltiVec is a trademark of Motorola, Inc. PowerPC and

PowerPC architecture are trademarks of International Busi-
ness Machines Corporation.

2. ALTIVEC TECHNOLOGY

The AltiVec technology offers 32 vector registers,each128-
bits wide. These registers can be split as sixteen 8-bits in-
tegers, eight 16-bits integers, four 32-bits integers, or four
32-bits IEEE single-precision floating point data elements.
These vector registers are in addition to, and architecturally
separate from the integer and floating point registers of Pow-
erPC. All AltiVec instructions operate on fixed-length, 128-
bit vectors, each performing the same operation on corre-
sponding elements in the source vector operands. Apart
from the intra-element operations, AltiVec also provides int-
er-element operations, such as sum of products and sum-
across. One of the most powerful inter-element operations
is the permute operation, which allows arbitrary selection of
up to 16 byte elements from a set of 32 bytes. This opera-
tion performs two very important functions, namely, data-
reorganization and table lookup. AltiVec also provides the
3-source operand form of multiplyaccumulate, multiply-
add. Multiply-add primitive multiplies the respective ele-
ments of two source vector registers, and adds the interme-
diate results to the corresponding elements of a third source
register (the accumulator). The result is deposited in the
target vector register. Architectural support is also provided
for vector dot product. This isaccomplished with two in-
structions: multiply-sum and sum-across. The multiply-
sum primitive multiplies corresponding elements in two so-
urce vector registers and sums the adjacent elements along
with corresponding value from a third source register into
four 32-bit partial sums, deposited in the target vector reg-
ister. Finally, note that a fairly large amount of data can
be stored in the 32 on-chip vector registers. This improves
performance in many cases by avoiding memory spills of
intermediate values.

We implemented some of the common speech process-
ing algorithms in C and AltiVec assembly. The code gener-
ated by the C compiler for the Scalar PowerPC instruction
set was found to be quite optimal. For the AltiVec, com-
piler development is still incomplete. We, therefore, coded
the AltiVec routines in assembly and invoked them from the
C program. The performance analysis presented in this pa-

per is based on a cycle accurate simulation of a possible
superscalar implementation of PowerPC architecture with
AltiVec extensions. Important micro-architectural charac-
teristics of this implementation are as follows:

� All instructions fully pipelined with single-cycle thr-
oughput, simple ops: 1-cycle latency, compound ops
(those involving multiply): 3-4 cycle latency.

� Dual AltiVec instruction issue: one arithmetic, one
permuteclass instruction (permuteclass refers to ins-
tructions involving inter-element rearrangements, like
pack, unpack, permute operations)

� No restriction on issue with scalar PowerPC instruc-
tions

The following sections describe the results of our work.

3. AUTOCORRELATION COMPUTATION

Autocorrelation computation is one of the first steps in com-
puting linear prediction coefficients (LPCs). It is also useful
for many other DSP applications. We investigated autocor-
relation computation from the speech processing point of
view, where only first few autocorrelation coefficients are
needed. If all the coefficients are needed, they can be com-
puted as the magnitude of the Fourier transform, which can
be computed very efficiently using FFT algorithms.

Autocorrelation coefficientsr(k) of a signals(k) are de-
fined asr(k) =

PN�1�k

n=0 s(n)s(n + k); whereN is the
length of the signal and0 � k < N . The signal is assumed
to be real, which is the most common case in speech pro-
cessing. To compute an orderp linear prediction filter,r(0)
throughr(p) are needed.

One of the most important considerations is the size of
each sample of the signal. If signal samples have fewer
number of bits, the whole computation or part of it can be
computed as integer operations without overflows. We as-
sumed that the samples are stored as 8-bit unsigned quanti-
ties and the actual sample values are computed by multiply-
ing them with a constant and adding an offset to keep the
algorithm general in nature.

If a signal is scaled, or multiplied by a factor, the linear
prediction filter does not change. Adding an offset, how-
ever, changes the filter. Let the constant offset bet. The
autocorrelation coefficientsrs(k), then, can be written as

rs(k) =
N�1�kX
n=0

[s(n) + t] [s(n + k) + t]

= r(k) + t

"
2
N�1X
n=0

s(n) �
kX

n=0

s(n)

�

N�1X
n=N�1�k

s(n)

#
+ t2(N � k)

The computation ofr(k) uses only unsigned 8-bit quantities
and forN = 256, the result can be stored in a 32-bit integer
without any overflows. Similarly, the results of the sums in
the second term can also be stored in a 32-bit integer.

The above algorithm was implemented in C and in Al-
tiVec assembly. The results are given in Table 1. The speed-

Order 4 8 12 16
PowerPC (Cycles) 5004 9292 13907 20779
AltiVec (Cycles) 276 407 543 676

Speedup 18.13 22.83 25.61 30.74

Table 1: Performance comparison for autocorrelation com-
putation.

up was calculated as the ratio of number of cycles for scalar
PowerPC implementation to the number of cycles for Al-
tiVec implementation.

LPC computation usually needs no more than 16 auto-
correlation coefficients. Hence we could store all the auto-
correlation coefficients in the large registers space available.
The C version used individual variables for computations
rather than arrays, except for the data samples, so that the
code generated by the compiler made optimum use of scalar
PowerPC registers.

The large speedups are obtained because we can per-
form 16 multiplications and 16 additions in one instruction,
as opposed to 32 instructions to do the same in scalar Pow-
erPC.

4. LINEAR PREDICTION

Linear prediction coefficients (LPCs) is one of the most
common techniques used in speech analysis [2]. It forms
one of the building blocks of speech compression systems.
Typically the computation of LPCs is carried out for 12 to
16 coefficients. Two popular methods for LPC computa-
tion which use the autocorrelation coefficientsr(k) of a real
signals(m) were implemented on AltiVec for performance
comparison.

4.1. Levinson-Durbin algorithm

In the Levinson-Durbin (LD) recursion algorithm [5], the
LPC filter is started with order 1 (which isa0

0
= 1), and

is grown recursively using reflection coefficientsKi. The
algorithm is very efficient on a scalar processor like Pow-
erPC. On a parallel processor, however, the computation of
reflection coefficientsKi, is a bottleneck [4]. Computation

of Ki involves inverting the coefficient vector, which is a
costly operation. We, therefore, store an inverted copy of
the LPC vector. It can be used in growing the LPC vector
later. The resulting algorithm is listed below.

1. E0 = r(0), a0
0
= 1, b0

0
= �1.

2. for i = 1 : p; Ki =
hPi

j=1 b
i�1
j�1r(j)

i
=Ei�1

3. bi
0

= �Ki

4. for j = 1 : i; bij = bi�1j�1 +Kia
i�1
j

5. aij = ai�1j +Kib
i�1
j�1

6. Ei = (1�K2

i)E
i�1

It can be easily verified that the reflection coefficientKi in
this algorithm is the sign reversedKi from the standard LD
algorithm.

4.2. Schur recursion

Kung and Hu [4] proposed a parallel algorithm based on
Schur method [8], used for solving a Toeplitz matrix. In
Schur recursion (SR), the system is solved by triangular-
ization or LU-decomposition of the autocorrelation matrix.
Their algorithm, simplified for real data and expanded to
compute LPCs from reflection coefficientsz, is given be-
low as a C code.

for(i=-p; i<= 0; i++)
u[-i] = v[-i] = r[-i];

a[0] = b[0] = 1;
for(i=1; i<=p; i++)
{

z = -v[i]/u[i-1];
for(k=-p; k<-i+1; k++)
{

u[-k] = u[-k-1] + z*v[-k];
v[-k] = v[-k] + z*u[-k-1];

}
for(k=i; k>0; k--)
{

b[k] = b[k-1] + z*a[k];
a[k] = a[k] + z*b[k-1];

}
b[0] = z;

} /* for i */

4.3. Results and discussion

The standard LD algorithm was implemented in C. The mo-
dified LD algorithm was implemented in AltiVec assembly.

The SR algorithm was implemented both in C and AltiVec
assembly.

A 256-point random data was generated using MAT-
LAB and filtered using a finite impulse response filter. The
autocorrelation coefficients were computed using MATLAB
and used as input to LD and SR algorithms in 32 bits float-
ing point format. The results of both the algorithms were
checked against those obtained using thelevinson func-
tion of MATLAB. The timing results are presented in Table
2. The overall speedup was computed as the ratio of the

Order 4 8 12 16
LD on PowerPC (cycles) 253 639 1225 1947
LD on AltiVec (cycles) 102 234 388 569

SR on PowerPC (cycles) 306 860 1638 2784
SR on AltiVec (cycles) 64 142 238 366

Speedup for LD 2.48 2.73 3.16 3.42
Speedup for SR 4.78 6.06 7.08 7.61
Overall speedup 3.95 4.50 5.15 5.32

Table 2: Performance comparison between for LPC.

number of cycles for the best algorithm on scalar PowerPC
and that for the best algorithm on AltiVec.

The main reasons for the speedups are as follows. For
the LD algorithm, a speedup of 4 is achieved in comput-
ing the numerator ofKi and updatinga. But updatingb
adds more computations. The load/store instructions in the
iterations are saved since all the variables can be stored in
AltiVec registers.

For the SR algorithm, all the steps except the compu-
tation ofKi are speeded up by a factor of 4. Further, all
the load/save instructions are not necessary because all the
arrays can be stored in registers. Therefore the speedup is
significant.

It should be noted that the results on scalar PowerPC
and AltiVec were not exactly the same. The reason is that
we used a reciprocal estimate in division on AltiVec, while
the scalar PowerPC uses actual floating point division. The
error was usually in the fourth or fifth decimal places in the
coefficients.

The LD algorithm is very efficient on a scalar proces-
sor. The SR algorithm does not work as fast as the LD al-
gorithm on scalar PowerPC. On AltiVec, however, the SR
algorithm performs much better than any of the two algo-
rithms on scalar PowerPC.

5. GSM SPEECH COMPRESSION

As an example of practical example, we implemented a sec-
tion of speech compression algorithm used in the global sys-

tem for mobile communication (GSM), Europe's currently
most popular protocol for digital cellular phones.

Thetoast library [1] was downloaded. After profiling
using thegprof program, it was found that about 39.8%
of computation time was consumed by long-term predic-
tion (LTP) coefficient computations. So we concentrated on
speeding up the LTP computations, corresponding to mod-
ule number 4.2.11 in the GSM recommendation [3].

5.1. LTP computations

The LTPs are basically cross-correlation coefficients bet-
ween two signals. The output of the function is the highest
coefficient and its location. The signals are 40 and 120 sam-
ples long. There are 80 coefficients totally. Each sample of
the signal is a 16-bit signed integer. The LTPs are 32-bit
integers.

Since 8 samples of the signal could be fitted in one Al-
tiVec register, both the signals could be fitted in the regis-
ters. The longer signal was then shifted by 1 sample and
the LTPs were computed. The highest value and its position
was retained.

The scalar PowerPC program took 12941 cycles for exe-
cuting the LTP function once. The AltiVec version gave the
same results in only 1034 cycles, a speedup of 12.5. The
main reasons for this speedup are that AltiVec does 8 mul-
tiplications and 8 additions in 1 instruction, as opposed to
16 to do the same on scalar PowerPC. Assume it takes100x
seconds for executing the GSM compression program, and
39:8x seconds for computing the LTP parameters. In that
case, AltiVec will take only3:2x seconds for LTP parame-
ter computations. Thus, even without optimizing any other
function, the compression is done in only63:4x seconds.

6. CONCLUSIONS

In this study, we implemented some of the commonly used
DSP algorithms on the AltiVec architecture. We compared
the execution times with those for the scalar PowerPC pro-
cessor. It was seen that AltiVec significantly increases the
speed of execution.

The manner in which the 128-bit wide AltiVec registers
are split is important. If the data is 32-bit, 4 samples can be
processed simultaneously. For a 16-bit or 8-bit data, even
more parallelism can be obtained. Traditionally, the algo-
rithms have been choosing the highest resolution available
(often 32 bits), because no significant advantage was possi-
ble by processing at lesser resolution, except while storing.
As shown by the autocorrelation computations, if the size of
each data sample is small, AltiVec can speed up the compu-
tations by a large factor.

Many popular algorithms were developed with scalar
processors in mind. In these algorithms the goal was to min-

imize the number of computations. With the AltiVec archi-
tecture, however, proper alignment of data can play a signif-
icant role by exploitingparallelism. An algorithm may work
faster if it has the right kind of parallelism, even though it
may require more scalar computations. This was demon-
strated by computation of linear prediction coefficients. The
Schur recursion outperformed the popular Levinson-Durbin
algorithm, even though the latter had fewer computations.

We implemented a part of the GSM speech compression
system to demonstrate the capabilities of AltiVec. Some of
the standard algorithms were designed with the computa-
tional costs of various functions in mind. The AltiVec offers
a faster implementation now. So some of the methods that
were computationally too costly earlier, can now be afford-
able. The AltiVec technology, thus, can play a vital role in
designing new DSP applications, or modifying the existing
standard algorithms.

In this paper we were mainly interested in implement-
ing some basic DSP algorithms. We wanted to demonstrate
the tremendous potential of the AltiVec architecture beyond
the easily parallelizable multimedia applications. At this
point many directions lie open for further work. The basic
algorithms developed here can be combined to speedup a
standard application, like speech coding. Many more basic
algorithms can investigated for underlying parallelism and a
library of several functions can be developed. A standard al-
gorithm can be profiled, and the most time-consuming func-
tions can be optimized using AltiVec.

7. REFERENCES

[1] J. Degener, “toast library,”
ftp://ftp.cs.tu-berlin.de/pub/local/kbs/tubmik/gsm/,Techni-
cal University of Berlin FTP server, Jul 5 1995.

[2] J. R. Deller, Jr., J. G. Proakis, and J. H. L. Hansen,Discrete-
Time Processing of Speech Signals,New York: MacMillan,
1993.

[3] ETSI, GSM Full Rate Speech Encoding,Recommendation
06.10, European Telecommunications Standards Institute,
B.P.152, F-06561 Valbonne Cedex, France, 1990.

[4] S.-Y. Kung and Y. H. Hu, “A highly concurrent algorithm
and pipelined architecture for solving Toeplitz systems,”
IEEE Trans. Acoust. Speech Signal Processing,Vol. ASSP-
31, No. 1, pp. 66-76, Feb. 1983.

[5] J. Makhoul, “Linear prediction: A tutorial review,”Proc.
IEEE,Vol. 63, pp. 561-580, 1975.

[6] Motorola, Inc, “Motorola AltiVec Technology,”
http://www.mot.com/SPS/PowerPC/AltiVec/.

[7] M. Phillip, K. Diefendorff, P. Dubey, R. Hochsprung, B.
Olsson, and H. Scales, “AltiVec (tm) technology: Accel-
erating Media Processing Across the Spectrum,” HotChips
10, Stanford University, California, August 16-18, 1998.

[8] I. Schur, “Uber potenzreihen die in innern des einheit-
skreises beschrankt sind,”J. Reine Angewandte Mathe-
matik,Vol. 147, pp. 205-232, 1917.

