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ABSTRACT

A �lterbank-based method of time-scale modi�cation is analyzed
for elemental signals including clicks, sines, and AM-FM sines.
It is shown that with the use of some basic properties of lin-
ear systems, as well as FM-to-AM �lter transduction, \perfect
reconstruction" time-scaling �lterbanks can be constructed for
these elemental signal classes under certain conditions on the �l-
terbank. Conditions for perfect reconstruction time-scaling are
shown analytically for the uniform �lterbank case, while empir-
ically for the nonuniform constant-Q (gammatone) case. Ex-
tension of perfect reconstruction to multi-components signals is
shown to require both �lterbank and signal-dependent conditions
and indicates the need for a more complete theory of \perfect re-
construction" time-scaling �lterbanks.

1 FILTERBANK FRAMEWORK

Consider a discrete-time signal x(n) passed through a bank
of �lters hk(n) where each �lter is given by a modulated
version of a baseband prototype �lter h(n), i.e., hk(n) =
h(n)exp[j(2�=R)kn] where h(n) is assumed to lie over a
duration �N=2 � n < N=2 (N even without loss of gener-
ality), and R, the frequency sampling factor, is the number
of �lters. In the context of this paper, the �lters are zero
phase in time and frequency, e.g., a Gaussian or Hamming
function. The �lters are designed to satisfy a perfect re-
construction constraint in frequency, i.e,

P
k
hk(n) = �(n),

where �(n) is the unit sample sequence. One condition for
perfect reconstruction is that the length of h(n) be less than
twice the frequency sampling factor, i.e., N < 2R [4].
Each �lter output yk(n) = x(n) � hk(n) is complex

[each �lter response hk(n) is complex] so that the tempo-
ral envelope of the output of the kth channel is ak(n) =
jyk(n)j and the phase of each bandpass output is �k(n) =
tan�1(Im[yk(n)]=Re[yk(n)]). Thus the output of each �l-
ter can be viewed as an amplitude and phase modulated
(complex) sine wave

yk(n) = ak(n)exp[j�k(n)]

and reconstruction of the signal can be viewed as a sum of
complex exponentials

x(n) =
X

k

ak(n)exp[j�k(n)] (1)
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2 TIME-SCALE MODIFICATION

The approach to time-scale modi�cation relies on the sub-
band signal representation in (1). The output of each �lter
is viewed as an amplitude- and phase-modulated sine wave,
the amplitude and unwrapped phases of which are interpo-
lated to perform time-scale modi�cation, as in the phase
vocoder [2]. With time-scale modi�cation by a factor �, the
modi�ed �lter output is given by

~yk(n) = ~ak(n)exp[j�~�k(n)] (2)

where ~ak(n) is the channel envelope and ~�k(n) is the un-
wrapped phase, both interpolated by the factor �. The
interpolated phase function in (2) is scaled by � to main-
tain the original frequency trajectory, i.e., phase derivative,
of each �lter output. We would like be be able to state
conditions under which a \perfect reconstruction" objective
holds for time-scale modi�cation, in particular, for time-
scale expansion for the purpose of improving the audibility
of closely-spaced signals and/or signals in noise. For an ar-
bitrary signal class, it is not straightforward to obtain such
constraints due to the nonlinear nature of the transforma-
tion represented by (2) and due to ambiguity in de�ning
time-scale modi�cation for di�erent signal classes. How-
ever, there do exist a number of simplifying cases where a
speci�c time-scale modi�cation can be de�ned and achieved
under certain constraints.

2.1 Click

Consider an input \click" of the form x(n) = �(n�no). The
perfect reconstruction time-scale modi�cation of the click is
de�ned to be a displacement in time �no samples, i.e., the
modi�ed signal is given by ~x(n) = �(n��no) where we have
assumed only integer rate changes. There is no change in
the signal character, only a signal shift. The output of each
�lter in the bank is given by hk(n � no), i.e., the impulse
response of each �lter is shifted to time no. Then the output
in polar form is given by

~yk(n) = hk(n) � x(n)

= h(n� no) exp[j(2�=R)k(n � no)]

and so the envelope of each �lter output is simply ak(n) =
h(n � no) and the phase is �k(n) = (2�=R)k(n� no).
In doing time-scale modi�cation, we interpolate the enve-

lope and unwrapped phase. The envelope is transformed to
a new function ~ak(n� �no) that has length �N where N is
the length of the prototype �lter h(n), and that is centered
at time n = �no. The phase is transformed to

~�k(n) = (2�=R)k(n=�� no)�

= (2�=R)k(n� no�)
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Figure 1: Time-scale modi�cation of click: original (upper);
modi�ed with N = 25 (middle); modi�ed with N = 50 (lower).

The transformed channel response is then given by

~hk(n) = ~ak(n� �no) exp[j(2�=R)k(n� no�)]

and, recalling that ak(n) is simply the prototype �lter h(n),
for perfect reconstruction we require that

y(n) =
X

k

~h(n� �no) exp[j(2�=R)k(n� �no)]

= ~h(n� �no)
X

k

�(n� �no � kR)

= �(n� �no) (3)

where ~h(n) is the time-scaled version of h(n). From (3), the
new condition for perfect reconstruction is that the dura-
tion of the time-expanded prototype �lter be less than twice
the frequency sampling factor, i.e., �N < 2R or N < 2R=�.
An implication of this constraint can be stated as

If we design the �lterbank to just meet the perfect recon-
struction constraint without modi�cation, i.e., N = 2R� 1,
we will need � times as many �lters with modi�cation, i.e.,
we need a denser sampling (by �) of �lters to account for
the time scaling.

Example 1: A complex �lterbank was designed with a Gaus-
sian prototype and with �lters spaced by 200 Hz over a 5000 Hz
bandwidth. Because the number of �lters over the full 5000Hz
band is R = 25, then the �lter length constraint for perfect re-
construction is N < 50=�. For time expansion by a factor of two,
Figure 1 shows examples with a prototype �lter length1 N = 25
and of length N = 50, the former just meeting our constraint
and the later violating the constraint and resulting in unwanted
pulses 50 samples to the right and left of the desired pulse.

2.2 Sine

Consider time-expanding a sine input of the form x(n) =
cos(!n+�o) by increasing its duration. Because x(n) is an
eigenfunction of a linear time-invariant system, and thus of
each �lter in our �lterbank, we have (ignoring the 1

2
scale

factor)

yk(n) = jHk(!)je
j�k(!)ej!n+�o

= jHk(!)je
j[!n+�o+�k(!)]

1A particular length is achieved with a Gaussian nearly zero
at its endpoints.

where Hk(!) = jHk(!)je
j�k(!) is a channel frequency re-

sponse. After time-scaling, the output of each channel be-
comes

~yk(n) = jHk(!)je
j�[!n=�+�o+�k(!)]

= jHk(!)je
j��k(!)ej(!n+��o)

Summing all channels, we have

~y(n) = ej(!n+��o)
X

k

jHk(!)je
j��k(!) (4)

At this point, we invoke the property that the prototype �l-
ter h(n) is assumed zero-phase and therefore that the mod-

ulated �lters hk(n) = h(n)ej
2�k

R
n are also zero-phase2, i.e.,

�k(!) = 0,. Under this condition, (4) can be written as

~y(n) = ej(!n+��o)
X

k

Hk(!) = ej(!n+��o)

because the �lterbank hk(n) is assumed perfect reconstruc-
tion. Unlike the click input, therefore, for a sine input to
be time-expanded without distortion, we do not require a
denser frequency sampling on the �lterbank that just meets
the perfect reconstruction condition.

2.3 AM-FM Sine

Consider now time-expanding an AM-FM sine input of the
form x(n) = a(n)ej�(n), where �(n) =

R n
0
!(�)d� , by in-

creasing its duration while slowing the rate of change of its
AM and FM. Under certain slow-varying conditions [1] on
a(n) and !(n), x(n) is a \pseudo-eigenfunction" of a linear
time-invariant system, and thus of each �lter in our �lter-
bank, i.e.,

yk(n) � a(n)jHk[!(n)]je
j�k [!(n)]ej�(n)

where the signal FM has been transduced to an AM [5]
within each channel. With time-scaling, the output of each
channel becomes

~yk(n) � ~a(n)jHk[~!(n)]je
j��k [~!(n)]ej�

~�(n)

where ~a(n), ~!(n), and ~�(n) are the time-scaled versions of
a(n), !(n), and �(n), respectively. Summing all channels,
we have

~y(n) �
X

k

~a(n)jHk[~!(n)]je
j��k [~!(n)]ej�

~�(n)

� ~a(n)ej�
~�(n)
X

k

Hk[~!(n)]

where we again invoke the property that the prototype �lter
h(n) is assumed zero-phase, and therefore that the modu-

lated �lters hk(n) = h(n)ej
2�k

R
n are also zero-phase. Each

channel �lter is swept by !(n) and is \synchronized" due
to the zero-phase property. Because the original �lterbank
is an identity, we then have the approximation

~y(n) � ~a(n)ej�
~�(n)

2More typically, we may constrain the �lters to be symmetric
in time. Although in this case the sidelobes in frequency are pos-
sibly negative, and thus strictly not zero-phase, they are oftened
designed to be negligible compared to the mainlobe.



Figure 2: Time-scale modi�cation of FM sine with N = 25:
original waveform and time-scaled version (upper pair); spectro-
grams of original waveform and time-scaled version (lower pair).

As with the steady sine input, therefore, we do not require
an additional constraint on a �lterbank, designed to just
meet the perfect reconstruction constraint, for an AM-FM
sine input to be time-expanded without distortion. We do
require, however, that the �lters are \wide enough" in fre-
quency so that the transduction approximation holds.

Example 2: A complex �lterbank was again designed with a
Gaussian prototype with �lters spaced by 200 Hz over a 5000 Hz
bandwidth. The prototype �lter is selected to just meet the per-
fect reconstruction constraint when no modi�cation is applied,
i.e., N = 2R � 1. Because the number of �lters over the full
5000Hz band is R = 25, the �lter length N = 25. Figure 2 shows
an example of time-scale expansion by two for an AM-FM sine
input beginning at 1000 Hz with a 15000 Hz/sec sweep rate.

3 MULTI-COMPONENT SIGNALS

We have seen that single component signals (i.e., a click
or AM-FM sine) are time-scalable by perfect reconstruc-
tion �lterbanks. Multiple closely-spaced components, on
the other hand, present in time and frequency new di�cul-
ties and stricter conditions for \perfect reconstruction."

3.1 Clicks

Suppose the input signal is of the form x(n) = �(n)+ �(n�
no). With time scaling by a factor �, ideally, we want an
output y(n) = �(n) + �(n� �no). Without time-scale mod-
i�cation, the output of each �lter in the �lterbank is given
by yk(n) = x(n) � hk(n) = hk(n) + hk(n � no). To de-
velop a su�cient condition for time-scale modi�cation, we
�rst observe that if no > N , N being the �lter support,
the two responses hk(n) and hk(n�no) are nonoverlapping.
The time-scale system then \acts linear", i.e., the time-scale
modi�cation of the sum is the sum of the time-scale modi-
�ed signals, and the time-scaled output is given by ~y(n) =P

k
hk(n) + hk(n � �no) = �(n) + �(n � �no). Therefore,

our constraint on the �lter length for perfect reconstruction
time-scale modi�cation becomes N < min[2R=�; no].

Example 3: A complex �lterbank is designed as in Exam-
ple 1. As before, because the number of �lters over the full
5000 Hz band is R = 25, then the �lter length constraint for
perfect reconstruction is N < 50=�. For time expansion by
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Figure 3: Time-scale modi�cation of two closely-spaced clicks
where no = 25: original (upper); time-scaled click pair with
N = 25 (middle); time-scaled click pair with N = 100 (lower).

two of two clicks spaced no samples apart, our constraint is
N < min[25; no]. Figure 3 shows an example of two closely-
spaced clicks where no = 25 and with two di�erent �lter lengths
N = 25 and N = 100. is violated. Although not our original
goal of spreading the clicks, this later transformation is useful
for periodic signals, as with the use of long �lters in the phase
vocoder [2], where an increase in the number of periods is de-
sired. A continuum between the two time-scaling objectives may
therefore be possible through �lter length.

3.2 Sines

Suppose the input signal is of the form x(n) = ej!1n+e!2n.
Without time-scale modi�cation, the output of each �l-
ter in the �lterbank is given by yk(n) = x(n) � hk(n) =
Hk(!1)e

j!1n +Hk(!2)e
!2n. To develop a su�cient condi-

tion for time-scale modi�cation, we observe that if j!1 �
!2j > BW , BW being the �lter bandwidth de�ned, for ex-
ample, as the distance between the 3 dB attenuation points,
the two components are essentially \independent", nonover-
lapping in frequency. The time-scale system then \acts lin-
ear" and the amplitude and phase interpolation are invoked
as though on independent components. Therefore, the time-
scaled output is as desired. On the other hand, when the
condition j!1 � !2j > BW is not satis�ed, then additional
unwanted components are introduced. Consider, for exam-
ple, two closely spaced sines. Then one predicts from the
duality of time and frequency, that other spectral compo-
nents will be introduced. The following example illustrates
this property.

Example 4: A complex �lterbank was designed as in Example
2. Figure 4 shows an example of time-scale expansion by two
of two closely-spaced sines where our su�cient constraint, i.e.,
j!1 � !2j > BW , is violated.

4 CONSTANT-Q FILTERBANKS

4.1 Gammatone Filters

Thusfar we have investigated uniform �lterbanks, i.e., uni-
formly spaced and with equal bandwidth. Our current focus
is the front-end auditory stage, i.e., the basilar membrane,
whose �lters are approximated by gammatone functions,
i.e., a damped cosine weighted by a gamma function, that in
discrete time are of the form h(n) = nN�n cos(!n). Along
the basilar membrane, these functions have logarithmically
increasing bandwidth (decreasing �) and frequency spac-
ing. Enforcing zero phase on each �lter, a set of noncausal
�lters that are time-aligned result. We have found empir-
ically that the sum of these �lter responses approximates



Figure 4: Time-scale expansion of two closely-spaced sines with
j!1 � !2j > BW : original and modi�ed waveforms (upper pair);
spectrograms of original and modi�ed (lower pair); superimposed
spectral slices of original and modi�ed (upper right).

an impulse, which is consistent with other designs of analy-
sis/synthesis systems based on a Gammatone �lterbank and
its time-reversed version [3]. Because we ultimately desire
auditory-like �lters and because low-frequency constant-Q
gammatone �lters are very long, we have invoked spacing
and bandwidth linearization in the low-end below about
1000 Hz, while maintaining an approximate perfect recon-
struction property.

4.2 Time-scale modi�cation

The constraints on the gammatone �lterbank are similar in
style to those of the uniform case for perfect reconstruc-
tion time-scale modi�cation. It has been found empirically
that if the frequency spacing-to-bandwidth ratio is \small
enough" relative to the time-scale factor, then an impulse
and sine are nearly perfectly reconstructed. Based on this
observation, we venture the following condition.

Suppose that the frequency spacing-to-bandwidth (denoted
by �=BW ) factor is the minimum possible for perfect re-
construction. Then perfect reconstruction with time-scale
modi�cation by a factor of � requires that �=BW be de-
creased by a factor of �.

With multi-component signals, however, there is a di�er-
ence from the uniform �lterbank case in that di�erent fre-
quency regions dominate for di�erent signal classes, as il-
lustrated in the following example.

Example 5: Figure 5 shows time-scale expansion by two of
two click pairs using a linearized gammatone �lterbank based on
�lters from the Matlab Auditory Toolbox developed by Slaney
[6]. Spacing between the two clicks of the �rst and second pair
are 20 ms and 10ms, respectively. We see that the 20ms-spaced
clicks are time-scaled without distortion. Between the 10ms-
spaced clicks however there appears a small unwanted pulse; this
pulse resides in the low-frequency region where the �lterbank
impulse responses are the longest. In fact, the impulse response
length in the linearized region is greater than 10ms, implying
interaction across signal components. We have also considered

Figure 5: Time-scale modi�cation of two click pairs with lin-
earized gammatone �lterbank: original and modi�ed waveforms
(upper pair); spectrograms of original and modi�ed (lower pair).

the dual problem of two sine-wave pairs. In one example, one
sine-wave pair sits at 100Hz and 600Hz, while the second sine-
wave pair sits at 3000Hz and 3700Hz. In this case, there is less
distortion to the low-frequency pair because the �lters in this
region treat the sines more \independently."

5 CONCLUSIONS

This paper has introduced the concept of \perfect recon-
struction" time-scaling �lterbanks, using as examples uni-
form and constant-Q gammatone �lterbanks, for a class of
elemental signals as well as multi-component signals de-
rived from this set. A more complete �lterbank theory is
required to address the improvement of time-scaling with
multi-components, the analytical treatment of constant-Q
and other nonuniform �lter types, and the generalization
to more complex signal models and alternate de�nitions of
time-scale modi�cation.
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