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ABSTRACT
In this paper, we describe a new tree-based CDMA receiver that
can optimally trade complexity for detection performance. It yields
the detector with the best detection performance for a given desired
complexity level. Alternatively, it yields the lowest complexity re-
ceiver for any given desired detection performance. We describe a
technique for designing receivers with linear complexity (includ-
ing the optimal linear detector and decorrelator). We then explain
how we can increase performance at the expense of a minimal in-
crease in complexity. We show that as complexity increases to the
level of that of the optimal receiver, our design approach automat-
ically produces the optimal receiver. We also explain how our ap-
proach can be used with a minimum-mean-square-error design cri-
terion and coded CDMA transmission. Finally, we illustrate with
several examples the superiority of the receivers designed with our
approach and discuss their advantages.

1. INTRODUCTION
Detection performance in CDMA communications is limited by the
interference of multiple users. The effect of this interference on de-
tection performance depends on the users’ signatures, and the de-
tector used in the receiver. Matched filter receivers have low com-
plexity but sacrifice detection performance. On the other hand, Op-
timal multiuser receivers are infeasible because their complexity
is exponential in the number of bits per chip. Here, we propose
a novel CDMA receiver design approach that optimally trades de-
tection performance for complexity. For any desired detector com-
plexity, our design approach yields the best performing detector. It
also produces the lowest complexity receiver for any desired de-
tection performance. This design approach uses the maxmin tech-
nique that we described in [1] for constructing low complexity tree-
based M-ary hypothesis testing procedures.

For simplicity, we shall focus in this paper on synchronous CDMA
detection. In such a case, the powers of users are known a priori
and our detector has the following main advantages. When used
to design detectors with a complexity proportional to the number
of bits per chip, i.e., equivalent to that of the matched filter or the
decorrelating receiver, our approach produces a non-linear detec-
tor that is asymptotically superior to the optimal linear detector of
[2]. Specifically, it has higher asymptotic efficiency for all users
after user 1, with user 1 having asymptotic efficiency equal to the
optimal linear receiver. Note that, for certain ratios between user
powers, our detector is equivalent to the decision feedback detec-
tor in [3], while at other ratios, our detector outperforms that de-
tector. In fact, the detector with a complexity equal to the matched
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filter receiver that our design technique produces, is to the optimal
linear detector what the decision feedback detector is to the decor-
relating detector. Another main advantage of our design approach
is that it can produce the optimal linear detector, or the decorre-
lating receiver when certain conditions are added to the maxmin
optimization. Perhaps, the most important advantage of this pro-
posed detector design approach is its ability to interpolate between
the performance of the best-known linear complexity receiver, and
the optimal infeasible exponential detector. Finally detectors de-
signed with our technique are a natural choice for coded CDMA.

The rest of the paper is organized as follows. In the next sec-
tion, we will briefly explain our low complexity M-Hypotheses tree
detection algorithm originally presented in [1]. We will also show
how the CDMA problem can be posed as an M -Hypotheses de-
tection problem where M is exponential in the number of users.
In Section 3, we explain how to design the optimal CDMA detec-
tor with a complexity equal to that of the matched filter receiver.
We will show that the optimal detector can be applied to any set of
signatures with arbitrary cross correlations. It can also be applied
to dependent signature sequences ( a case where the decision feed-
back detector does not exist), making it an excellent candidate for
detection of oversaturated CDMA communications. We also show
that by imposing certain conditions on our maxmin optimization
problem, we can obtain the optimum linear detector, or the decor-
relating detector. As a byproduct of our design procedure, we give
a different derivation of the optimal linear detector. This leads to
an easier optimization technique for deriving this detector as com-
pared to the technique given in [2]. We then take our detector one
step further and show how to obtain even better performance by
increasing the complexity in steps. At complexity equal to the op-
timal receiver complexity, our receiver converges to this optimal
detector. Next, we discuss in Section 4 how the design approach
can be used with a Minimum mean squared error receiver design
criterion. In the final section, we show how our technique performs
in coded CDMA communications.

2. LOW COMPLEXITY M-HYPOTHESIS DETECTION
In [1] we presented a progressive refinement approach to M-ary de-
tection problems. This approach can lead to a logarithmic reduc-
tion in the complexity of the detector. Ideally, we would hope to
group the hypotheses in two large groups and subsequently split
these two sets in two recursively. Unfortunately, binary partitions
cannot always capture the exact boundary between two groups of
hypotheses. Therefore, we cannot group the hypotheses in disjoint
groupings if we wish to achieve a detection performance close to
optimal. On the other hand, we want to minimize overlap between
the groupings to minimize the number of comparisons required to



make a decision. Hence, our problem then is one of approximat-
ing the partitions of the decision plane with the minimal number
of binary partitions, or equivalently of designing a tree of minimal
depth.

Now, assume that we receive vi + noise, 1 � i � M , where
the noise is white Gaussian noise, and vi is the ith possible trans-
mitted N dimensional vector. We want to divide these M vectors
into 2 groups and choose a representative for each group. Assume
these representatives are g1 and g2. To decide which group is more
likely we would compare rT g1 and rT g2. Or, we can compare
rT (g1 � g2) to a certain threshold. Let g = g1 � g2. Therefore,
we should select a unit norm N dimensional vector, g, that solves

max
g; th

min
vi

abs(gTvi � th) (1)

and then divide the vectors into two groups: those that have cor-
relation with g larger than the threshold, th, and those with less
than the threshold correlation. We then continue building the tree
by repeating the above procedure at each node, till we reach the leaf
nodes with only one hypothesis associated with them.

Now, in CDMA with K users, assume that we form a vector,
~bi, formed of a certain possible combination of all the user bits. The
received signal ~r can be written as ~r = vi + noise, where

vi =

KX

k=1

bi(k) �Ak � ~sk (2)

where bi(k); Ak; ~sk are, respectively, the transmitted bit, ampli-
tude, and signature of user k. We form the M hypotheses as the
possible noiseless transmissions using all possible combinations of
user bits.

3. PROPOSED DETECTOR
3.1. Designing Detectors with Linear Complexity
We shall use the terminology “linear complexity” to mean a com-
plexity equivalent to that of the matched filter receiver, that is a
complexity of one vector multiplication per bit. In this section we
will show how to design such an optimal detector. We will also
show that by adding some constraints to our optimization problem
we can get the optimal linear detector, or the decorrelating detector.
At each node of the tree, we want to select the unit norm vector g
that solves (1). This problem can be written in the form of a con-
strained minimization problem [4]. This problem may lead us to
local minimas, and so we choose to pre assign vectors to the two
groups, the group belonging to the left branch and the group be-
longing to the right branch. Assume that the preassigned groups
are called vl and vr . Therefore, our optimization problem can now
be written as

max
g; th

min
vi

[(gT vi2l � th); (th� g
T
vi2r)] (3)

where vectors vi2l are the ones chosen to be in group 1, and vi2r
are the vectors chosen to be in group 2. By some manipulation of
the equivalent minimization problem, this maxmin problem can be
shown to be convex.

Dividing the vectors into two groups can be done in a variety of
ways. For example, we can use one of the local minimas from (1),
and then re-optimize. Or we can decide that we want to divide the
vectors into 2 equal halves, and solve the optimization problems for
all the possible divisions of the vectors. This means that forM vec-
tors, we have to solve this optimization problem M!

2�M
2
!�M

2
!

times.

This is a large number for large M , but notice that this is done off
line, and therefore in some cases it can be affordable. Also, we can

choose to assign all the vectors corresponding to user 1 transmit-
ting a ’1’ to group 1, and those corresponding to a ’-1’ to group 2.
Therefore, j will take values 1; 2; :::M

2
, and k values M

2
+1; M

2
+

2; :::::M . On the next node we can do this division based on user 2
transmission, and so on. Doing this gives us the feedback detector
of [3], with the difference that our detector at each stage converges
to the best linear detector and not the decorrelating detector. Let us
assume that each user is transmitting binary bits. Our tree detector
will be as shown in Fig. 1. At each level of the tree a user bit will
be declared. Notice that because of the symmetry between nodes
at any given level of the tree, the vector g will be the same for the
nodes at the same level, while the threshold will be different from
a node to the other. We will call this vector, at level j, ~zj . We will
also call the tree designed using this approach a “natural” tree.

As a demonstration of an oversaturated communication sys-
tem, four random signatures of length 3 were given to four users.
Notice that the detector of [3] is not defined here. We built two dif-
ferent trees. The first one was the “natural” tree described above.
Another tree was built by trying different divisions at each node,
and-for each node- choosing the division that maximizes the dis-
tance between the two clusters. The results are shown in Fig. 2. It
is obvious that by optimizing the tree in that case, the probability of
error was decreased substantially. This shows that in certain cases,
especially those that the “natural” tree suffers from a large differ-
ence in error from the optimal probability of error, optimizing the
tree can gain us a large part of this difference.

To construct the optimal linear detector using our tree approach,
we design a “natural” tree described above. In a “natural” tree, de-
ciding on user k transmitted bit depends entirely on which cluster
we chose at level k of the tree. If, at each node of our tree, we want
the probability of choosing the wrong cluster to be independent on
the previous bit decisions, we have to make the vector that differen-
tiates between the two clusters, ~zk, and the threshold the same for
all the nodes at a certain level. Due to the symmetry of the vectors,
we can choose the threshold to be zero, and solve the maxmin prob-
lem for g only. Notice that the above procedure applies to whether
the vectors are dependent or not.

Similarly, we can derive the decorrelating detector by identi-
fying a “natural” tree. Since, the decorrelating detector “decorre-
lates” the signatures of the different users, the vector ~zk at level k
should be orthogonal to all other user’s signatures. Therefore, to
make our tree detector equivalent to the decorrelating detector, we
add this orthogonality constraint to our maxmin problem.

3.2. Designing Higher Complexity Optimal Detectors
The way we defined our clusters in this paper till this point, does
not allow overlapping of clusters. As shown in [1], allowing vec-
tors to fall in both clusters would enhance the performance of our
detector, while at the same time increase the complexity of bit de-
tection. We can re-define our optimization problem to allow vec-
tors to fall in both cluster instead in just one. Let vl correspond to
the vectors in the left branch of the current node, and vr correspond
to the right branch. Allowing repetition means that the sets vl and
vr intersect. Let vll to be those vectors in the left branch but not in
the right branch, and vrr to be those in the right branch and not the
left branch. Now, we solve the maxmin problem using only these
“exclusive” vectors.

Once more, we have a variety of ways to choose these parti-
tions. We can choose the number of vectors we are allowing to be
repeated, and then try all possible combinations. We can start with
the linear complexity tree, and then take those vectors in the right
cluster and closer to the left cluster, and those in the right cluster



and closer to the left cluster, and place them in both clusters. We
also might choose, at the first node, those vectors corresponding to
users 1 and 2 sending a ’1’ and a ’1’ to be in a cluster, and those
corresponding to users 1 and 2 sending a ’-1’ and a ’1’ to be in the
other cluster. On the next node, we can divide the vectors corre-
sponding to a ’1’ and a ’-1’ and those corresponding to a ’-1’ and
a ’-1’. After these 2 divisions, we are either decided on user ’1’ or
we need another comparison. We can choose the third comparison
such that we are left with a decision for both users 1 and 2.

Our Experiments indicate that the following few guidelines al-
ways enhance performance. One should always choose user 1 to
be the user with the largest power. Also, choose user 2 to be the
one that has the largest correlation with user 1. Also, try to keep
the vi’s that are separated by a small distance in the same cluster.
If a certain vi is close to many other vi’s allow it to repeat in several
clusters until the leaf node.

Fig. 3 shows the probability of error at various noise standard
deviations for a 4-user CDMA system that uses pseudonoise se-
quences, and are assumed to be of equal power. We use 2 trees that
use either 5 or 6 multiplications per 4 bits. The trees are not shown
here due to lack of space. Fig. 4 gives a complexity-probability of
error curve at a certain signal to noise ratio.

We can also implement the optimal multiuser detector using
our technique. In particular, we will make every node differentiate
between only 2 vectors. The two clusters from the first node will
contain M � 1 vectors each, with M � 2 vectors repeated in both
clusters. At the next level, we repeat M�3 vectors, and so on. We
will hence have a tree with M �1 levels, so our complexity for bi-
nary K users is 2K�1, which is the exponential complexity of the
optimal detector. It is clear that the performance is independent on
which nodes differentiate between which vectors, and that to dif-
ferentiate between vectors vr and vl, we multiply by z = vr � vl
and compare to 1

2
(vTl vl � vTr vr).

4. MINIMUM MEAN SQUARED ERROR DETECTOR
Minimum mean squared error detector can be used for CDMA mul-
tiuser communications [5] [6]. By writing all the possible M hy-
potheses, we can also implement the minimum mean squared error
detector in a tree structure. We can define the MMSE detector as
the vector ~x which when multiplied by the received vector, mini-
mizes the mean of the squared error between the transmitted bit and
the result of this multiplication. The mean is taken over all possible
user transmissions, i.e. over all possible values of vi for i = 1:::M
and over all possible values of the noise. Therefore we can write
the problem as

min
~x

Epdf(noise);vi(�1� ~x � ~r)2 (4)

where the +1 is for those vi corresponding to user 1 sending a 1,
and the -1 for those vectors corresponding to user 1 sending a -1
and ~x is an N -dimensional vector. Also, ~r = vi + ~n, where ~n
is a Gaussian noise vector. This definition will allow us to extend
the MMSE detector to operate with higher complexity than K and
come closer to the optimal detector.

Specifically, we can use any of the methods used in building
larger trees. We divide the vectors into any two overlapping clus-
ters. In that case, the outputs of both clusters might not be equally
spaced from zero due to the DC bias in them. To account for this
we have to subtract this DC term from the output. Therefore, we
pad a -1 to the end of the vectors vi. Call these extended vectors vei .
Therefore, our problem would be as in (4), but ~x is now an (N+1)-
dimensional vector. Also, ~r = vei + ~n, where ~n is a vector whose

first N components are the Gaussian noise vector, and its last ele-
ment is zero.

An advantage of the MMSE approach over the maxmin approach
is the ability to find the detector adaptively using the Least Mean
Squares ( LMS ) approach [7]. However, a small adaptation has to
be done to the LMS to make it suitable for the cases where there is a
DC bias. As in the none adaptive version, we extend the filter ~x by
an extra component. When filtering the received vector we append
to it a -1.

The adaptation rule is ~xt+1 = ~xt���et�~rt where et is the cur-
rent error, and is equal to�1� ~xTt ~rt. Notice that the adaptation is
not done on each bit that is sent. Instead, it is done when the trans-
mitted vector lies in one cluster but not the other. It can be done
through training or it can be decision directed. The last element in
~x can be updated using the previous expression. Alternatively, it
can be adjusted to cancel the DC bias.

As an example consider the case of 4 user CDMA, and let us
cluster the vectors such that the vectors corresponding to user 1
sending a 1, and user 2 sending a 1 lie in one cluster, and those
corresponding to user 1 sending a -1 and user 2 sending a 1 in the
other cluster. Fig. 5 shows how the tree MMSE can track changes
in amplitude. Here, we start with ~x0 corresponding to equal am-
plitude users, then assume the users have random amplitudes. As
in any LMS algorithm, particular care has to be used in choosing
the adaptation factor � so that the algorithm does not get trapped in
local minima. This method also works with unknown signatures.

5. ERROR CORRECTION

Using block error correction decoding in multiuser communications
seems particularly suited to our approach in detection. Our hypothe-
ses will be only the possible outputs, and hence we can easily use a
joint approach for detection and error correction. Other schemes al-
low all the possible binary combinations in detection, then decode
in a later stage. Recently, in [8], the decoding was done on each
user’s bits before going on to detect the next users, but in detect-
ing the user bits, no use of the error correction code characteristics
were utilized.

Assume we use a (n; k) block code, and we have a K user
CDMA system, where each user uses a particular pseudonoise sig-
nature of length p. To decode and detect jointly, we will have to
look at a frame of length n bits. We will assume we have n � K
users, where each user uses a n � p length signature. Each user
corresponds to a particular user sending a particular coded bit. So,
each of these expanded signatures will be zeros everywhere, except
for p consecutive chips where it is equal to the original signature of
one of the users. Using these signatures, we could generate a 2n�p

hypotheses, and solve it in our usual way, and then do decoding. If
we did that, and built our tree such that each user bits were detected
before going on to detect next user bits, we get the same detector as
in [8]. But, we can also, through our knowledge of the error correc-
tion code codebook, throw away all the impossible sequences, and
hence, end up with only 2k�p hypotheses. Building a tree of com-
plexity k � p now will allow us to jointly detect and decode while
making some use of the power of our error correction code while
using only a complexity of 1 per uncoded user bit, instead of 1 per
coded bit as in current techniques. We can also build larger trees
which have higher complexity, while decreasing our probability of
error.

We will demonstrate this with an example. Assume we have
a 2-user CDMA system. Assume that each user uses a (7,4) Ham-
ming code [9]. Fig. 6 compares the probability of error using a tree
of complexity equal to 7 with the feedback technique explained in



[8]. Our technique out performs this technique. Notice that what
we calculated for the feedback technique is the result of their first
stage. We could always get better results by adding subsequent stages,
but if the initial decision is more reliable, as by using our detector,
the results after any stage will also be better. Each of the two de-
tectors use 7 matched filter operations per 4 uncoded bits of each
user.
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Figure 1: “Natural” tree for 4 users
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Figure 2: Probability of Error for four users using length 3 PN se-
quences
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Figure 3: Probability of Error at various complexities
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Figure 6: Probability of Error for a 2 user CDMA with each user us-
ing a (7,4) Hamming code-complexity=1 matched filter operation
per coded bit


