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ABSTRACT

Harmonic retrieval is a classical signal processing problem
but it has been almost invariably assumed that the addi-
tive noise is stationary. In this paper, we abandon this
requirement and allow the additive noise to be nonstation-
ary (but also non-cyclostationary in order to distinguish it
from the information bearing signal). We show that various
FFT based approaches can still be used on a single record
of data to yield frequency estimates that have the O(T�3)
variance, where T is the data length. Stationary multi-
plicative noise is also permitted in the model. Numerical
examples illustrate the key concepts of the paper.

1. INTRODUCTION

Harmonic retrieval has been a very important and ac-
tive area of research in modern signal processing [2]. If
all quantities involved are real-valued, a single component
harmonic-in-noise process can be written as

x(t) = s(t) cos(!0 t + �0) + v(t); (1)

where t = 0; 1; : : : ; T � 1 is the discrete-time index. The
objective is to estimate the frequency of interest !0 from
the above single record of data.
The cases where (i) the amplitude s(t) is a constant; i.e.,

s(t) � A, and (ii) the amplitude s(t) is a deterministic
but time-varying function; e.g., s(t) = A e��t, have been
thoroughly investigated (see e.g., Walker [6], Hasan [3]).
Recently, there has been greater interest towards studying
(iii) the multiplicative noise case where the amplitude s(t)
is a stationary random process (see e.g., Swami [5], Zhou
and Giannakis [7], [8]). In all cases (i)-(iii), the additive
noise v(t) is assumed to be stationary and the !̂0 estimate
obtained using FFT based approaches has variance that is
in the order of O(T�3). In this paper, we focus on the case
where s(t) is a stationary random process (which includes
s(t) � A as a special case) but abandon the stationarity
assumption on v(t). We will show that as long as v(t) is
not cyclostationary, FFT based algorithms can be formu-
lated which yield frequency estimates that still maintain the
O(T�3) variance. These results are signi�cant because they
can explain why previous FFT based harmonic retrieval al-
gorithms have been so successful in real life applications|
they were devised using the stationary additive noise as-
sumption but they also happened to work for nonstationary
(excluding cyclostationary) v(t) processes as well. There
are also indirect applications of these results, an example of
which is given here for the polynomial phase signals.
The paper is organized as follows: we derive FFT-based

frequency estimation algorithms in Section 2 and show their
variance expressions in Section 3. In Section 4, we illustrate
the usefulness of our results by way of a polynomial phase

signal example where the optimum choice for the lag pa-
rameter is determined by applying the variance expression
obtained in Section 3. Extensive computer simulation re-
sults are presented in Section 5 to illustrate the algorithms
and the accuracy of the variance expressions. Finally, con-
clusions are drawn in Section 6.

2. FREQUENCY ESTIMATION

It is well known that an estimator based on the kth-order
statistic of a random process has variance expression that
depends on the 1st- through (2k)th-order statistics of the
same random process. Therefore higher-order statistics are
often a necessity when deriving closed form variance ex-
pressions. Since the process in (1) is nonstationary, time-
varying higher-order statistics need to be introduced.

2.1. Notations

For a given set of lags �
4
= (�1; : : : ; �k�1), the kth-order

time-varying moment of x(t) is de�ned as

mkx(t; � )
4
= Efx(t)x(t+ �1) : : : x(t+ �k�1)g: (2)

The corresponding time-varying moment spectrum is

Mkx(t;!)
4
=
X
�

mkx(t; � ) e
�j�!

0

; (3)

where !
4
= (!1; : : : ; !k�1).

It turns out that time-averaged statistics are useful when
dealing with single record parameter estimation of nonsta-
tionary random processes. Similar to Zhou and Giannakis
[7], we introduce the kth-order time-averaged moment:

�mkx(� )
4
= lim

T!1

1

T

T�1X
t=0

mkx(t;� ): (4)

The kth-order time-averaged moment spectrum can be de-
�ned via Mkx(t;!) or �mkx(� ):

�Mkx(!)
4
= lim

T!1

1

T

T�1X
t=0

Mkx(t;!); (5)

=
X
�

�mkx(� ) e
�j�!

0

: (6)

The kth-order time-varying cumulant of x(t), ckx(t; � ),
can be obtained from mlx(t; � ) with 1 � l � k. For def-
initions and properties of cumulants, see Brillinger [1, p.
19]. kth-order time-varying cumulant spectrum Skx(t;!),
time-averaged cumulant �ckx(� ), and time-averaged cumu-
lant spectrum �Skx(!), can be de�ned similar to (3)-(6) with



the cumulant quantities replacing their moment counter-
parts. Note that for stationary processes, time-averaging
has no e�ect; e.g., �cks(� ) = cks(� ) for s(t) stationary.
Next, we keep � �xed, take the Fourier Series (FS) ex-

pansion of ckx(t;� ) w.r.t. t, and de�ne the kth-order cyclic
moment of x(t) as

Ckx(�; � )
4
= lim

T!1

1

T

T�1X
t=0

mkx(t; � ) e
�j�t: (7)

If Ckx(�; � ) 6= 0 for some � 6= 0, then x(t) is called kth-
order cyclostationary. Conversely, if Ckx(�; � ) = 0 8� 6= 0,
then we say that x(t) is not kth-order cyclostationary.

2.2. Assumptions

The following assumptions are made for the process in (1):
(A1) !0 is a deterministic constant in (0; �).
(A2) �0 is a deterministic constant.
(A3) s(t) and v(t) are mutually independent.
(A4) s(t) is stationary and mixing up to the 4th-order; i.e.,
the kth-order cumulant of s(t) satis�es

P
�
jcks(� )j < 1

for 1 � k � 4.
(A5) v(t) is mixing up to the 4th-order; i.e.,

P
�
jckv(t; � )j

<1 for 1 � k � 4 and 8t.
(A6) v(t) is not 1st-order cyclostationary when E[s(t)] 6= 0
and v(t) is not 2nd-order cyclostationary when E[s(t)] = 0.
We emphasize that we do not make any assumption on the
color or distribution of s(t) and v(t).
Because of (A4), the kth-order cumulant spectrum of s(t)

is �nite; i.e., jSks(!)j < 1. Similarly, the kth-order time-
averaged cumulant spectrum of v(t) is bounded, j �Skv(!)j <
1, due to (A5).

2.3. The nonzero mean case

Let us �rst consider the case where ms = E[s(t)] 6= 0. The
time-varying mean of x(t) is

m1x(t) = E[x(t)] = ms cos(!0t+ �0) +m1v(t): (8)

Taking its FS expansion w.r.t. t, we obtain,

C1x(�) =
1

2
ms e

j�0 �K(�� !0) +
1

2
ms e

�j�0 �K(�+ !0)

+ lim
T!1

1

T

T�1X
t=0

m1v(t) e
�j�t

| {z }
C1v(�)

: (9)

In the above equation, �K(�) is the Kronecker delta function
and it appears because

lim
T!1

1

T

T�1X
t=0

ej�t =
n

1; � = 0 mod (2�)
0; otherwise

4
= �K(�): (10)

Since we assume that v(t) is not 1st-order cyclostationary,
we have that C1v(�) = 0, 8� 6= 0 mod (2�). Therefore, (9)
reduces to

C1x(�) =
1

2
ms e

�j�0 �K(�� !0) + �m1v �K(�); (11)

where �m1v = limT!1 T�1
PT�1

t=0
m1v(t) = C1v(0). Thus

by searching jC1x(�)j over 0 < � < �, we can locate a peak
at � = !0 which yields the desired frequency information.

The same result can be derived from the 2nd-order time-
averaged spectrum of x(t) as well. We start with the time-
varying auto-correlation of x(t),

m2x(t; �)
4
= E[x(t)x(t+ � )]

= m2s(�) cos(!0t+ �0) cos(!0t+ !0� + �0) (12)

+m2v(t; �) (13)

+msm1v(t+ �) cos(!0t+ �0) (14)

+msm1v(t) cos(!0t+ !0� + �0): (15)

Using property (10), it follows easily that the asymptotic
time average of (12) is 1

2
m2s(�) cos(!0� ). By de�nition, the

asymptotic time average of (13) is �m2v(� ). Our assumption
(A4) with k = 1 implies thatms is �nite. This together with
assumption (A6) ensure that the asymptotic time averages
of (14) and (15) both tend to zero. Summarizing, we �nd

�m2x(�) =
1

2
m2s(�) cos(!0�) + �m2v(� ): (16)

The �rst term on the r.h.s. of (16) contributes the follow-
ing to �M2x(!):

1

2
S2s(!0) +

m2
s

4
�D(! � !0); (17)

where �D(�) is the Dirac delta function. Next, we examine

�m2v(� ) = lim
T!1

1

T

T�1X
t=0

m1v(t)m1v(t+ � )

| {z }
gv(�)

+ �c2v(�):

According to (A6), m1v(t) is not periodic in t and hence
m1v(t + � ) is not periodic in � . Therefore gv(�) de�ned
above is not a periodic function of � and its FT Gv(!) is �-
nite except possibly at ! = 0. Recall also j �S2v(!)j < 1
as a consequence of (A5). We therefore conclude that
j �M2v(!)j < 1 except possibly at ! = 0. This result, to-
gether with (17), implies that if we search over ! 2 (0; �),
we will �nd that �M2x(!) peaks only at ! = !0 which is the
desired frequency.
From the above analyses, we realize that the same con-

clusion can be obtained whether we use cyclic or time-
averaged spectral statistics. In the cyclic mean approach,
a Kronecker delta appears at � = !0 and jC1x(�)j is theo-
retically insensitive to the additive noise e�ect. Using the
time-averaged spectrum concept, we �nd that a Dirac delta
appears at ! = !0. Although the contribution of the ad-
ditive noise term to �M2x(!) is nonzero, it nevertheless has
�nite amplitude at ! 6= 0 which is basically \nothing" as
compared to the Dirac delta at ! = !0.
A natural estimator for (9) is

Ĉ1x(�) =
1

T

T�1X
t=0

x(t) e�j�t; (18)

and the natural estimator for �M2x(!) is

�̂M2x(!) =
X
�

1

T

T�1X
t=0

x(t)x(t+ � )

| {z }
�̂m2x(�)

e�j!�

=
1

T

�����
T�1X
t=0

x(t) e�j!t

�����
2

: (19)



Both (18) and (19) require taking the FT of the data. Their

apparent relationship, �̂M2x(!) = T jĈ1x(!)j2, implies that
peak picking either one yields the same !̂0 estimate. For
simplicity, we adopt

!̂0 = arg max0<�<� jĈ1x(�)j: (20)

2.4. The zero mean case

When ms = 0, the time-varying correlation of x(t) at lag
� = 0 is given by

m2x(t; 0) = E[x2(t)] = �2s cos2(!0t+�0)+m2v(t; 0); (21)

where �2s = E[s2(t)] is the variance of s(t). Taking the
FS expansion of (21) w.r.t. t and using (10), we obtain the
cyclic correlation of x(t) at cycle � and lag 0:

C2x(�; 0) =
1

4
�2s e

�2j�0 �K(�� 2!0)

+
1

2
�2s �K(�) + C2v(�; 0): (22)

According to (A6), C2v(�; 0) = 0, 8� 6= 0. Therefore, by
searching for peaks of jC2x(�; 0)j over the range 0 < � < �,
we can estimate 2!0, which in turn, yields an unambiguous
estimate of !0 if it lies in (0; �=2). When !0 > �=2, wrap
around occurs in C2x(�; 0) and !0 cannot be distinguished
from � � !0.
Sample estimate of (22) is obtained as

Ĉ2x(�; 0) =
1

T

T�1X
t=0

x2(t) e�j�t; (23)

which is nothing but the normalized FT of the data squared.
Subsequently, the frequency estimate is obtained as

!̂0 =
1

2
arg max0<�<� jĈ2x(�; 0)j: (24)

3. VARIANCE EXPRESSIONS

Following the procedures of Zhou and Giannakis [8], we
can derive variance expressions for the sample estimators
in (20) and (24). Most of the steps are similar although
minor modi�cations need to be made to accommodate the
fact that ckv(t; � ) is present instead of ckv(� ). Nevertheless,
the �nal variance expressions look almost identical, except
that the spectral quantities of v(t) must now be replaced
by their time-averaged counterparts.
For the nonzero mean case and the frequency estimator

in (20), we �nd the following large sample (i.e., large T )
variance expression:

var( !̂0 ) � 1

T 3

�
24 �S2v(!0)

m2
s0

+
6S2s(2!0)

m2
s0

�
: (25)

We wish to point out that the above expression applies when
!0 6= �=2 and when 2!0 is not a cycle of c2v(t; �); otherwise
additional terms need to be added to (25).
For the zero mean case and the frequency estimator in

(24), the variance expression is

var( !̂0 ) � 1

T 3

48G(!0)

�4s0
; (26)

where G(!) is de�ned through

h1(�)
4
= c4s(0; �; � ) + 2c22s(�);

h2(� )
4
= �c4v(0; �; �) + 2�c22v(� );

h3(�)
4
= 4c2s(� )�c2v(�);

g1(!)
4
=

1

8
H1(2!) +

1

32
H1(4!);

g2(!)
4
=

1

2
H2(2!);

g3(!)
4
=

1

8
H3(!) +

1

8
H3(3!);

G(!)
4
= g1(!) + g2(!) + g3(!):

The most important aspect of these results is that the vari-
ance of the !̂0 estimate is still O(T�3) despite of the fact
that v(t) is nonstationary. Although these derivations are
for the cosinusoid model of (1), the O(T�3) variance rate
for !̂0 can be shown to apply for the complex harmonic
model as well.

4. APPLICATION TO POLYNOMIAL PHASE
SIGNALS

An Mth-order polynomial phase signal (PPS) is modeled
in discrete-time as [4, Sec. 12.6]

y(t) = A expfj
MX
m=0

amt
mg; j =

p�1: (27)

Although a PPS is generally aperiodic, its appropriately de-
�ned high-order instantaneous moment (HIM) can be peri-

odic. Speci�cally, de�ne for integer q, y(�q)(t) = y(t) if q is
even and y�(t) if q is odd. Then for a �xed lag � 6= 0, the
HIM operator is

PM [y(t); � ]
4
=

M�1Y
q=0

[y(�q)(t� q� )]

�
M � 1

q

�
: (28)

It can be shown that the application of (28) to (27) yields a
pure harmonic at frequency ~!0 =M ! �M�1 aM [4, p. 395].
Now consider the PPS-in-noise process x(t) = y(t)+v(t).

The HIM operator applied to x(t), PM [x(t); � ], will contain
a harmonic at frequency ~!0 plus a compounded additive
noise process which contains not only PM [v(t); � ] but also
a large number of cross terms produced by the nonlinear
HIM operator. This compounded additive noise process is
nonstationary even if v(t) is stationary.
To estimate aM , we simply take the FT of PM [x(t); � ] and

then estimate ~! from its peak location. When fx(t)gT�1t=0 is
available, only (T � (M � 1)�) amount of data is utilized in
forming PM [x(t); � ] according to (28). Therefore, using the
variance expression developed in Section 3, we infer that
the variance of âM is proportional to ��2(M�1) (T � (M �
1)� )�3. Let g(�) = � 2(M�1) (T � (M � 1)� )3. Then by
setting g0(� ) = 0, we �nd � = T=(M + 0:5) which is the
optimum choice of lag that results in the minimum variance
for the âM estimate.
In [4, p. 398], it was mentioned that via extensive com-

puter simulations, the optimum choice of � that gives
the lowest asymptotic variance for âM was found to be
� � T=M for M = 2; 3 and � � T=(M +2) for 4 �M � 10.
Our derivation for the optimum choice of � corroborates
these empirical results and is novel.



5. SIMULATIONS

In this section, we shall illustrate the performance of the
proposed algorithms by way of computer simulations. We
will see that the variance expressions (25) and (26) are valid
regardless of the color and distribution of the multiplicative
and additive noise processes.

Example 1: The nonzero mean case. We generated sam-
ples of x(t) according to (1) with !0 = 1. Multiplicative
noise s(t) was i.i.d. Gaussian with mean ms = 0:8 and vari-
ance �2s = 0:36. Additive noise was v(t) = d(t)�(t) where
d(t) was a deterministic function and �(t) was an MA(2)
process generated by passing zero-mean, unit-variance ex-
ponential variates through an FIR �lter with coe�cients
[1; 0:5; 0:2]. Therefore, v(t) is nonstationary. Because
s(t) is white, it has S2s(!) = 0:36, 8!.
First let d(t) = cos(0:7t2). In this case,

�S2v(!) = �2�
1

2
(1 + b21 + b22) = 0:645 �2�;

Var(!̂0) =
1

T 3

15:48 �2� + 2:16

0:64
: (29)

In Figure 1(a), we show jĈ1x(�)j obtained with T = 256.
Peaks were observed at � � �!0 and hence a search for a
peak over � 2 (0; �) yields an estimate for !0. We zero-
padded the data to length 218 or 220 prior to taking the
FFT to ensure that the resolution of the frequency axis
is �ne enough. We used 100 independent realizations and
calculated the variance of the resulting !̂0 estimates. Next,
we varied T and set m2

s=�
2
� (by varying �2�) equal to �2dB

(top), 8dB (middle), and 18dB (bottom) respectively, and
plotted in Figure 1(b), the variance of the !̂0 estimates
obtained from the Monte-Carlo runs (solid lines) and its
corresponding value as given by (29) (dashed lines). We see
that the large sample result (25) is valid even for T in the

neighborhood of 100. Next, we used d(t) = e�0:7t=T and
d(t) = 1 + 0:7(t=T ) + 0:5(t=T )2. The corresponding results
are shown in Figures 1(c) and 1(d), respectively. Similar
observations are made.

Example 2: The zero mean case. Both s(t) and �(t) are
white Gaussian with zero-mean and unit variance. d(t) =

cos(0:7t2) was used. Figure 2(a) shows jĈ2x(�; 0)j obtained
with T = 256 and is seen to peak around � = 0;�2!0.
Figure 2(b) shows the sample (solid lines) vs. theoretical
(dashed lines) variance curves for !̂0 as �2s=�

2
v varies from

0 to 10 to 20dBs (top to bottom): close agreement is ob-
served between the empirical and the theoretical variance
expressions for T above a reasonable threshold.

6. CONCLUSIONS

In this paper, we have studied the problem of harmonic re-
trieval in nonstationary additive noise and shown that FFT
based algorithms still work as long as the additive noise pro-
cess is not cyclostationary. Stationary multiplicative noise
e�ects are also taken into account. We have developed vari-
ance expressions for the frequency estimates and seen that
the same O(T�3) variance rate applies. We carried out ex-
tensive computer simulations to examine the performance
of the algorithms and gave a polynomial phase signal ex-
ample to illustrate the applicability of the results.
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Figure 1. The nonzero mean case.
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Figure 2. The zero mean case.
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