
HYBRID MULTIPLIER/CORDIC UNIT FOR ONLINE
HANDWRITING RECOGNITION

Stephen McInerney, Richard B. Reilly
stephenm@faraday.ucd.ie, richard.reilly@ucd.ie

DSP Group, Dept. of Electronic and Electrical Engineering
University College Dublin
Belfield, Dublin 4, Ireland

ABSTRACT

Traditionally Online Handwriting Recognition (OHR)
implementations use general-purpose processor architectures.
The pre-processing step of OHR comprises regular array-based
tasks such as normalisation, feature extraction and
segmentation. Standard processor architectures cannot however
efficiently support the varied arithmetic operations required by
pre-processing. These tasks would seem ideally suited for
custom hardware acceleration. CORDIC offers all the required
elementary functions for pre-processing but is inefficient for
linear mode operations (multiplication/division) due to its serial
nature. A hybrid Multiplier/CORDIC architecture is proposed
in which a fast iterative multiplier/MAC shares hardware with
a serial CORDIC unit. This multiplier retires 6b/cycle with
minor additional hardware requirements. This hybrid offers
improved general performance for signal-processing
applications and is targeted at the pre-processing task of OHR.
Performance results are included.

http://wwwdsp.ucd.ie

1. ONLINE HANDWRITING
RECOGNITION PRE-PROCESSING

The growth in use of Personal Digital Assistants generates a
need for accurate OHR under significant constraints of processor
die area, power and memory.

The OHR task itself involves pre-processing, character
recognition and optional postprocessing steps. The
preprocessing step involves normalisation, feature extraction
and segmentation processes [1]. By implementing the pre-
processing in hardware, potential resources on a PDA are
released for other applications.

Normalisation aims to correct unwanted variations in the input.
Typical processes are rotation, scaling, shear transform,
deskewing, extrema location, centre-of-mass location, zone
classification, smoothing, threshold-based anomaly exclusion,
resampling in the time and/or spatial domain.

Feature extraction gives the recognizer its expected inputs in
such formats as Euclidean distance, velocity or acceleration
(requiring differentiation and integration), stroke or interstroke

direction expressed either as slope, angle, cosine, sine or
curvature, and measure of stroke curviness (stick, arc, curve).

Segmentation entails classifying a sequence of sample points
into strokes and characters, and relating them by order,
connectivity and significance.

Operations typically required by these pre-processing tasks [2]-
[5] are listed below.

� MAC-based operations: differentiation/integration,
filtering, resampling, scaling, shear transform, centre-
of-mass location, dot product

� elementary functions sqrt, sin,cos, tan, sinh,cosh,
exp,ln

� elementary transformations: rotation, Euclidean
distance

� compound operations e.g. curvature, Hough transform
� comparison-based operations: thresholding, extrema

finding, intersection checking

These operations map to general-purpose architectures with
varying levels of efficiency.

Sample features were taken from the open-distribution UNIPEN
project [6]. The uptools 3.2 suite was profiled and produced the
results in Table 1. Profiling results are expressed in terms of
call count to basic functions for each coordinate pair. For
illustration the following features were selected: Sc: cumulative
displacement, COSF: cosine of running angle and Curv:
curvature.

Feature
name

filter /
differ

mean polar division Euclidean
distance

Sc 2 0 0 0 1
COSF 2 0 0 1 1
Curv 3 1 1 1 0

Table 1 Profiled operation counts for sample features

The results indicate a mixture of multiply-accumulate-intensive
tasks with elementary functions. This paper investigates
implementations with a broad range of elementary function
capabilities targeted at OHR pre-processing.

2. CORDIC APPROACHES

2.1 CORDIC Applicability to OHR

One algorithm which offers an unrivalled range of elementary
function capabilities is the CORDIC (COordinate Rotation
DIgital Computer) iterative algorithm [7]. This relies on circular
and hyperbolic modes [8]. Traditionally CORDIC linear mode
for multiplication and division has been neglected as it
underperforms standard iterative and array algorithms [9] due to
its high latency, low efficiency and limited accuracy.

Implementation parameters are dictated by the application,
where the sampling rate of the pen input coordinates is typically
100Hz at resolutions of 200 points/inch [1]. These data values
are fully representable by wordlengths of 12-18 bits.

Due to the limited throughput of this application, fixed-point
serial approaches with wordlengths of up to 18 bits were
selected.

2.2 CORDIC Circular & Hyperbolic Modes

CORDIC implementations exhibit a performance/die area
tradeoff curve [10] and in practice one of the extremes is chosen:
fully pipelined or serial.

The functionality required for CORDIC includes arithmetic
units (X,Y,Z adder/subtractors), shift sequence parameters, Z-
coefficient sets, double-iteration and scaling-iteration control
flags.

Fully pipelined approaches [11] achieve high speed and area
savings due to hardwiring of coefficient values into the
arithmetic and shift units of each stage. Furthermore zero
rotations may be allowed in later stages due to negligible scaling
factor effect [12]; this allows higher-radix multiplicative
termination stage(s).

Serial approaches require additional sign-extending barrel-
shifters for X,Y values and a ROM and iteration control FSM
for handling the coefficients. A serial CORDIC is shown in the
diagram below.

X Y Z

Mode and
Direct ion

Cont ro l FSM

+/-

x i

Coef f i c ien t ROM

Cont ro l ROM

yi

z i+1

+/- +/-

x i+1 yi+1

M U X M U X

z i

ShifterShifter

Figure 1 Serial CORDIC Unit

2.3 CORDIC Linear Mode

Linear-mode multiplication (vectoring) and division (rotation)
require almost no additional hardware but have not been
investigated in the literature due to their poor efficiency.

The CORDIC linear-mode multiplication/MAC algorithm is
inefficient in its unmodified form for the following five reasons:

� The result Y → Y + X*Z is necessarily truncated to the
width of the Y register.

� The algorithm is inexact. It is equivalent to a one-bit-
serial signed-digit {1, 1¯ }-recoded MSB-first algorithm.
Zero rotations are not allowed, even though scaling
factor is not an issue. This absence of zero rotations
causes 1 LSB error for even multipliers.

� The inefficiency of the recoding also incurs
unnecessary add/sub operations.

� The absence of zero rotations also causes the multiplier
to be extended to n bits, requiring leading sign-bit-
detection if early termination is desired.

� The Z-unit is inefficiently utilised to perform a simple
1b right-shift operation on the multiplier.

Similarly the unmodified linear-mode division algorithm is
inefficient. Both operations are suitable for improvement. This
paper focuses on improving multiplication.

3. MULTIPLIER/CORDIC DESIGN
A basic principle is that architectural modifications should
justify their additional cost by their performance benefit. Hence
due to the dominance of multiply/MAC operations in the OHR
feature extraction application, a serial CORDIC unit was chosen
for minimal area.

It is possible to reuse the CORDIC logic to implement a fast
iterative multiplier structure. This gives a significant
improvement on CORDIC performance with limited additional
logic requirement. Furthermore, the full precision result can be
generated.

The proposed Multiplier/CORDIC unit is shown in Figure 2. It
is based on a standard serial fixed-point CORDIC unit using
18b precision (1b overflow, 12b value, 5b guard bits). An
iterative triple-radix-4 Booth-recoded multiplier/MAC is formed
reusing the X,Y,Z adder/subtractors and shifters to retire
6b/cycle.

The ROM requirement is 28 x 20b by using a heuristic for
generating optimal-size coefficient sets [13].

>>6X Y

xi

+/-

+/-
{x,2x}

{4x,8x}

Z
[6:4][17:6] [4:2][2:0]

Iteration
Counter FSM

D O N E

[5:0][23:6]

zi+1[17:12]

+/-

z i
y i

Booth
multiple T

{16x,32x}

R

T

S

Booth
multiple R

Booth
multiple S

yi+1[17:0] [11:0]zi+1

Figure 2 Hybrid Multiplier/CORDIC Unit

The additional hardware requirement of the hybrid design is the
three modified radix-4 Booth multiple generators and the
datapath multiplexers (not shown) for hardware-sharing. The
CORDIC barrel-shifters are not used in multiplier mode.

The register assignments are similar to CORDIC linear mode,
except the result is maintained to full precision. The multiplier
is stored in Z, the multiplicand is stored in X, and the
intermediate result is stored in {Y,Z}. 6b of multiplier are
retired per cycle by shifting {Y,Z} right and loading the
intermediate result into Z. For MAC operations an 18b
accumulate value is loaded into Y; for multiplies Y is reset to
zero.

Each of the three Booth stages retires 2b/cycle. Each generator
encodes a three-bit slice of Z to produce the required multiple
{0,X,2X} with sign bit. Shifting then produces the required
multiples up to 32X. These are summed in the add/sub tree.

Precision of multiplicand X is limited to 17b so that the 2X
multiple can use the 18b add/sub block. Precision of the final
add/sub in the tree must be extended to be 20b.

Precision of multiplier Z is only 17b due to the Booth encoding
requirement that the LSB of Z be zero. Additionally in MAC
mode the control FSM must be modified to prevent the LSB of
the product being scanned as if it was a spurious bit 18 of the
multiplier.

4. RESULTS AND EVALUATION

4.1 Multiply/MAC performance

Table 2 below illustrates the sixfold multiply/MAC latency
decrease of the proposed design compared to the standard
CORDIC architecture. Full precision support is shown.

Architecture Latency
(cycles)

Precision

CORDIC 18 18b x 18b ÆÆ 17/18b (*)
M/CORDIC 3 17b x 18b + 18b ÆÆ 35b
Array MAC 1 18b x 18b + 18b ÆÆ 36b

Table 2 Comparison of algorithm performance
(*) LSB is in error for even multipliers

4.2 Implementation results

The overall design was implemented in VHDL and synthesised
with Synopsys 98.02 to a 0.6µm process (Toshiba TC6A
library). Representative results derived from prelayout synthesis
values are presented in Table 3 for comparison.

Architecture Area (µm2) Cycle time (ns)

CORDIC (serial) 7,150 (*) 19.47
M/CORDIC 10,300 (*) 22.89
Array MAC 16,570 17.36

Table 3 Implementation results for algorithms
(*) Area of 28 x 20b ROM not included.

The speed and area penalty of the M/CORDIC design are 18%
and 44% compared to a standard serial CORDIC. If the ROM
was included the true area penalty would be significantly lower.

Compared to a full-precision array Multiply-Accumulate design,
the Multiplier/CORDIC is 32% slower but 38% smaller
(excluding ROM).

5. DISCUSSION

The results of the proposed hybrid represent a significant
improvement on standard architectures while yielding
compatible implementation parameters and acceptable support
for the target application. The implementation penalty for this
multiplexed functionality is shown to be acceptable.

Of the three designs compared, the Multiplier/CORDIC hybrid
is a significant improvement on the linear-mode performance of
a standard CORDIC. Although an array MAC has the lowest
multiply latency (one cycle), it offers no capability for other
signal-processing functionality such as described in Section 1
above. Hence the Multiplier/CORDIC presented offers a
superior architecture for OHR pre-processing.

The optimal implementation was achieved by addressing the
tradeoff of speed vs. area. The cycle time of a serial CORDIC is
determined by the slower of two path groups: the Z-unit path
through the ROM and add/sub unit, and the X/Y-unit arithmetic
paths. The Multiplier/CORDIC has an additional timing path in
the multiplier passing through a Booth encoder and the tree of
carry-propagating add/sub blocks.

These three path groups can be balanced for optimal
Multiplier/CORDIC implementation. For the range of
implementations obtained for this design, the CORDIC Z-path
was critical and hence the speed overhead of the M/CORDIC
approach reduced to the delays in the hardware-sharing
multiplexers. This limits the attractiveness of applying carry-
save arithmetic as it would only speed up the non-critical
multiplier path.

Implementation of division and of early termination in
multiplication are for future investigation. A serial multiplier
can be enhanced with early termination functionality by adding
extra leading-digit detection and barrel-shift capability [14].

The Multiplier/CORDIC module described could be integrated
to a standard CPU by an on-chip bus. A system architecture
including a small coordinate RAM would allow single-chip
hardware support for OHR signal processing in a PDA-type
design. Programmability could be implemented either by a
program decoder or ROM microcode.

6. CONCLUSION

A Multiplier/CORDIC architecture has been shown to offer an
improvement on the general-purpose signal processing utility of
a CORDIC unit, while simultaneously giving greater
functionality than a MAC unit. This represents a more attractive
platform for OHR pre-processing operations.

ACKNOWLEDGEMENT

The authors acknowledge their indebtedness to the UNIPEN
group at NICI, University of Nijmegen [6], and to Silicon and
Software Systems (S3), Dublin. This work was supported under
the Forbairt Strategic Research Programme as ST/98/023.

7. REFERENCES
[1] C. Tappert, C.-Y. Suen and T. Wakahara, “The State of the

Art in On-line Handwriting Recognition,” IEEE Trans
PAMI, vol. 12, pp. 787-808, 1990.

[2] W. Guerfali and R. Plamondon, “Normalizing and
Restoring On-line Handwriting,” Pattern Recognition, vol.
26, pp. 419-431, 1993.

[3] P. Morasso, L. Barberis, S. Pagliano and D. Vergano,
“Recognition experiments of cursive dynamic handwriting
with self-organizing networks," Pattern Recognition, vol.
26, pp. 451-460, 1993.

[4] L. Schomaker, "Using stroke- or character-based self-
organizing maps in the recognition of on-line, connected
cursive script," Pattern Recognition, vol. 26, pp. 443-450,
1993.

[5] J. Hu, M. K. Brown and W. Turin, "Invariant features for
HMM based handwriting recognition," pp. 588-593, Proc.
ICIAP, 1995.

[6] http://hwr.nici.kun.nl/unipen/
[7] J. Volder, "The CORDIC Trigonometric Computing

Technique" IRE Trans Electronic Computers, vol. 8, pp.
330-334, 1959.

[8] J. Walther, "A Unified Algorithm for Elementary
Functions" Spring Joint Computer Conf. Proc. vol. 2, pp.
927-930, 1971.

[9] I. Koren, "Computer Arithmetic Algorithms," Prentice-Hall,
1993.

[10] S. Wang and V. Piuri. "A Unified View of CORDIC
Processor Design," Application Specific Processors, ed. E
Swartzlander, pp. 121-160, 1996.

[11] D. Timmerman, B. Rix, H. Hahn and B. Hosticka, "A
CMOS Floating-Point Vector-Arithmetic Unit," IEEE J-
SSC, vol. 29, pp. 634-639, 1994.

[12] S. Wang, V. Piuri and E. Swartzlander, "Hybrid CORDIC
Algorithms," IEEE Transactions on Computers, vol. 46,
pp. 1202-1207, 1997.

[13] D. König and J. Böhme. ”Optimizing the CORDIC
Algorithm for Processors with Pipeline Architecture,”
Signal Processing V : Theories and Applications, ed. L
Torres et al., pp. 1391-1394, 1990.

[14] US Patent #5557563, Advanced RISC Machines Ltd.,
1996.

