
INCREMENTAL ENROLLMENT OF SPEECH RECOGNIZERS

C.  Mokbel, O. Collin

France Télécom - CNET / DIH / DIPS
2, av. Pierre Marzin, 22307 Lannion cedex, France

email: {chafik.mokbel, olivier.collin}@cnet.francetelecom.fr

ABSTRACT
Classical adaptation approaches generally allow a reliably trained
model to match a particular condition. In this paper, we define an
incremental version of the segmental-EM algorithm. This method
permits to incrementally enrich a model first trained with limited
amount of data.  Resource memory constraints allow only the
initial data statistics to be stored. The proposed method uses
these statistics by fixing, within the segmental EM algorithm
applied on both initial and new data, the initial optimal paths in
the model for the initial data. We proved theoretically that this is
equivalent to the segmental MAP adaptation with specific choice
of priors. Experimented on two speaker dependent telephone
databases, the approach permitted to incrementally integrate new
conditions of use. The performance was slightly less than that
obtained with classical training over the whole data. As expected
with the MAP interpretation of the algorithm, initial data
characteristics influence largely the model evolution.

1. INTRODUCTION
We are currently involved  in a telephone speech recognition
system using simultaneously speaker independent and speaker
dependent word modeling. The speaker independent part is
constituted of the same twenty command words for each user.
The dependent part is a set of words specific to each user that are
real time dynamically added. These speaker dependent words are
HMM models estimated, using a fixed variance strategy, with
few data: only two or three speech utterances. Obviously, using a
particular vocabulary by another speaker gives very high
recognition error rates (about 70%). Although, the dependent
part of our system is one speaker oriented, in several cases we
need to adapt this model to make it more accurate, more robust to
line conditions, or even to share it between a small set of users.
As long as storage and computational constraints are required,
we can’t keep all utterances, or duplicate the models. Thus, we
experimented an incremental enrollment which allows us to
update the dependent models without additional resource
requirement.

Classical HMM parameters adaptation techniques [2][1][4]
permit to adjust the model parameters in order to better match a
particular condition. In that case, the initial model is generally
estimated using a large amount of data. This is not the case in our
application, where a limited amount of data is first used to
estimate the model parameters. This estimate must be adjusted
incrementally in order to cover a larger set of conditions (more
speakers, different environments, ...). In the following section,
we propose an incremental version of the segmental EM
algorithm. It appears that this algorithm is a particular case of the
Maximum A Posteriori (MAP) adaptation algorithm [1] with

adequate choice of the priors depending on the initial data set.
This relation provides another view of the MAP estimation.

Section 3 describes the experiments conducted on two speaker
dependent telephone databases in order to validate the approach.
The results show that the incremental enrollment permits to a
speaker dependent model to incorporate the characteristics of
other speakers, and even to converge towards a speaker
independent model. The importance of the initial speaker is
highlighted and can be easily understood within the MAP
framework. Another set of experiments proved the possibility of
the incremental enrollment to increase the robustness of the
model by integrating various environment conditions. Finally the
conclusions are drawn in section 4 and a perspective of this work
is proposed in order to reduce the influence of the initial data set.

2. INCREMENTAL ENROLLMENT

2.1 Classical Segmental EM Algorithm

To model speech signals in the feature vectors space of
dimension p, "Hidden Markov Models" (HMM) are generally
used. These models are composed by a Hidden Markovian
automaton of Q states and by a set of output distributions
associated to the states of the automaton. A first order ergodic
HMM λ is characterized by the probabilities of occupation of the

states at the initial time { }Π = =πi i Q; , ,1K , the probabilities of

transitions between the states { }A a i j Qij= =; , , ,1K  where aij is

the probability of the transition from the ith state to the jth state,
and the states' output distributions here supposed Gaussian with
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The HMM parameters are not known a priori and are generally
trained using speech databases. The training aims to determine
the parameters' values such as the HMM describes reliably the
distribution of the training speech signals. Since the sequences of
states corresponding to the sequences of speech feature vectors
are hidden and not observed, there is no direct analytic solution
to the training problem. EM-based algorithms are generally used.

Given a set of K training speech signals { }X X X
K
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If no a priori is available for the model parameters, MAP
criterion becomes equivalent to the Maximum Likelihood (ML)
one which can be solved using the EM-algorithm:
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Here we are particularly interested in the segmental version of
the EM algorithm [1], where the criterion to optimize differs
slightly from that defined in Eqs. 1 and 2. For each observed
sequence of speech frames Xk different sequences of states Sk in
the model can be associated. Sk belongs to a discrete space S(k)

which depends on the speech sequence length and on the number
of states Q. Regarding these spaces of possible state sequences
S = { S(k) }, Eqs. 1 and 2 can be written:
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The segmental version of the EM-algorithm replaces the
summation in Eqs. 3 and 4 by a maximization, i.e.:
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Comparing Eqs. 5 and 6 to Eqs. 3 and 4 respectively, the
segmental EM algorithm maximizes the joint distribution of the
model parameters and the state sequences while the classical EM
algorithm maximizes the mean of that distribution over the state
sequence space. The segmental EM algorithm is an iterative
algorithm where each iteration is decomposed into two steps: the
Estimate step where the speech data are aligned on the model
and, the Maximize step where the model parameters are re-
estimated. The re-estimation equations for the iteration i are:
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where Xk(t) ∈ ql designates that the tth vectors of the kth sequence
is aligned during the Estimate step on the lth state, nl is the total
number of those vectors and, nlp is the total number of transitions
from the lth state to the pth state.

2.2 Incremental Segmental EM Algorithm
If a model λI is already trained with an initial set of speech data
X(I), and if some new data X(N) is available to enrich the model
parameters, the classical segmental EM algorithm aims to:
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The proposed incremental segmental EM algorithm optimizes
only the model parameters and the new state sequences given the
whole data. The optimal state sequences of the initial data are
fixed the same as in the initially trained model. This means that

the state sequences corresponding to the initial training data are
considered to be always optimal. Eq. 8 can be written:
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Without a priori on the model parameters Eq. 9 becomes:
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For this incremental version, the re-estimation equations for the
iteration i can be easily obtained:
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where all the parameters of the initial model are constant and do
not depend on the Estimate step of the iteration.

2.3 Comparison with MAP Estimation

In [1] MAP estimation of HMM parameters is described
supposing that the a priori distribution of the model parameters
is a product of Normal-Wishart and Dirichlet distributions for the
Gaussian parameters and the transition probabilities respectively:
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where Rq represents the precision matrix of the qth distribution
(Γq

-1) and U    q and αq the parameters of its a priori distribution, p
the dimension of the feature space, mq and τq  the mean and
precision factor of the a priori distribution of the mean vector.
Comparing the re-estimation equations in the MAP framework
with those in Eq. 11, we conclude that the proposed approach is
a particular case of the MAP adaptation with the priors:
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In parallel, MAP adaptation can be seen as the proposed
incremental enrollment, with the characteristics of the initial data
used for training related to the priors.



3. EXPERIMENTS AND RESULTS

3.1 Databases and Modeling

Two telephone databases (bdd1 and bdd2) were used in the
experiments involving simultaneous speaker dependent and
speaker independent recognition. The vocabulary of each
database is composed of two main parts: French command words
and digits (speaker independent) and several collections of
proper names. The first database, bdd1, was collected from 16
(11 male and 5 female) speakers over the fixed telephone
network. The second database, bdd2, was collected from 40 (20
male and 20 female) speakers over both fixed and mobile
telephone networks. Each speaker repeated the entire vocabulary
4 times for training issues over the fixed telephone network for
bdd1 and over both fixed and cellular network for bdd2. In
average, each speaker in the bdd1 database repeated, for
evaluation, 4 times the vocabulary in home and office
environments. For the test part of the bdd2 database, an average
by speaker of 2 and 7 repetitions of the vocabulary were
collected in the fixed and cellular networks respectively. 69% of
the GSM test data were collected from a running car. These two
databases helped us to develop the France Telecom - CNET
voice activated dialing system where simultaneous speaker
independent and dependent recognition (SSIDR) modes are
combined [3].

Feature analysis consists in computing on 32ms frames shifted
every 16ms, the energy on logarithmic scale, 8 MFCC
coefficients and their first derivatives resulting in sequences of
vectors with 18 coefficients. Those sequences of vectors were
modeled using 20 state left-right HMMs. 13 command words
were used in the speaker independent part of the model. These
words were trained using other fixed and cellular telephone
databases including several hundred of speakers. The speaker
dependent part of the model is constructed using our databases
with fixed variances. Training is done using 2 to 4 repetitions.
The experiments were conducted in order to investigate if the
incremental enrollment described previously can help to enrich
the speaker dependent part of the model by including different
conditions for the same speaker (for example PSN + GSM) or,
other speakers towards speaker independent modeling. The
influence of the first speaker on the incremental enrollment
procedure is also studied.

3.2 Enriching Incrementally a Speaker
Dependent Model with Other Speakers

These experiments aimed at investigate the possibility of
evolution of a speaker dependent model to include other
speakers. Two bounds can be measured for the incremental
enrollment. The first bound is the performance of the speaker
dependent system on other speakers. For the bdd1 database, 30
proper nouns were added on the independent model and were
trained, using 2 repetitions of a specific speaker, and were
evaluated on the repetition test by all the other speakers. The
average error (substitution with the nouns or commands) rate was
about 67%. The second bound is the one obtained with the
classical training using all the data from the first and added
speakers, 2 repetitions by speaker. The results are shown on

Fig. 1 as well as the results with the incremental enrollment for
adding one or two speakers. These results are given in average
for all the combination of speakers in the database. Looking at
Fig. 1, it turns out that incremental enrollment provides worse
performance than direct training with grouped data. However, the
obtained performance is acceptable compared to the starting 67%
error rate, especially in regards to the practical advantages of the
incremental enrollment: there is no need to conserve the initial
data. Fig. 2 shows in average, for each speaker following its
position, the performance after incremental enrollment. It can be
seen that the performance for the first speaker is nearly constant
and is better than that obtained with a classical training.
However, the results for the added speakers are worse than those
obtained with the classical training algorithm.

The same experiments where conducted on 20 (10 male and 10
female) speakers of the PSN part of the bdd2 database. While a
first 10 (5 male and 5 female) speakers were used for
incrementally enriching the speaker dependent model, the other
10 speakers were used for evaluating the obtained model in a
speaker independent mode. Average results for the initial
speaker, the added speakers, and the other speakers are shown on
Fig. 3. These results show that the incremental enrollment seems
to provide constant performance for the initial speaker and the
added speakers, independently of the number of added speakers,
while the performance in the speaker independent mode is
improved with the number of added speakers.

1.4
2.4 2.6

1.4

3.6 4.1

1

10

1 2 3
Number of speakers

Training with all
the data

Incremental
Enrollment

Figure 1. Results when adding other speakers to a speaker
dependent model on the bdd1 database.
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 Figure 2. Results of incremental enrollment on bdd1 database
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 Figure 3. Results when adding other speakers to a speaker
dependent model on the bdd2 database.



From the results of Figs. 2 and 3, we conclude that the initial
speaker characteristics influence largely the incremental
enrollment of the parameters. This can be explained with regards
to section 2.3, since the proposed approach is seen as a particular
case of the MAP estimation with an a priori distribution derived
from the first speaker characteristics. Thereby, it is unlikely that
the model’s parameters go far away from the local optimum
relative to the first speaker.

3.3 Enrich Incrementally a Speaker
Dependent Model with Other Conditions

Experiments were conducted on the 20 previous speakers of the
bdd2 database in order to study the incremental enrollment of
their models to include different conditions. Fig. 4a shows the
average results on the fixed telephone part of the database. The
measured improvements with respect to the basic model are
equivalent to a classical enrollment approach and, to the
proposed incremental approach. Fig.4b shows the average results
for the GSM conditions. In this figure the whole GSM and the
quiet GSM data (not collected in a running car) are
distinguished. This distinction is done since the training GSM
repetitions are all from quiet conditions. According to the results,
the incremental enrollment achieves performance as good as the
classical enrollment with the whole data. The initial environment
condition has a less influence in this case than in the previous
application.
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Figure 4a. Average PSN results when enriching the model with
other training repetitions.
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 Figure 4b. Average GSM results when enriching the model with
other training repetitions.

4. CONCLUSIONS

In this paper, an incremental enrollment procedure is proposed.
Starting from an initial model trained with few initial data, for
every set of new data the proposed incremental version of the

segmental EM algorithm is used to update the model parameters
by fixing, in the Estimate step, the optimal paths in the model
corresponding the initial data, to their values on the initial model,
and by optimizing the model parameters and the paths for the
new data. We have theoretically shown that this approach is
identical to the MAP adaptation approach with specific priors
extracted from the initial data statistics. This permits to interpret
the priors in the classical MAP framework as the statistics of
some initial data used for training and for which the paths in the
model are fixed to their optimal values on the a priori model.

The application of the proposed approach is slightly different
from classical adaptation techniques. It aims at incrementally
enrich a model initially trained with a reduced amount of data.
For example, a personal directory (voice dialing) can be enriched
for use in a family or in various conditions. In this context we
have experimented the algorithm on the France Telecom - CNET
personal directory system, where simultaneous speaker
independent and dependent recognition is performed. The new
algorithm was first experimented in order to enrich the speaker’s
voice labels by using labels from other speakers. The measured
performance provides satisfaction since it is close to the
performance of a system trained directly with the initial and new
data. The results showed that the proposed algorithm is
constrained by the initial data characteristics. This is explained
by the fact that the initial speaker defines the priors when seeing
the algorithm in the MAP framework. Another set of experiments
has shown that by adding incrementally speakers’ characteristics
to the model, the proposed algorithm might converge the model
to a speaker independent one. The results obtained when
enriching incrementally the model by integrating different
conditions of use (PSN+GSM) were also equivalent to those
obtained with a classical training using the whole data.

The main perspective of this work is the reduction of the
difference in performance between the first speaker and the
added speakers. A simulated annealing version [5] of the
proposed algorithm might be developed in order to allow the
algorithm converge far from the local optimum defined by the
initial training data.
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