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ABSTRACT

This paper describes a new approach to acoustic mod-
eling for large vocabulary continuous speech recognition
(LVCSR) systems. Each phone is modeled with a large
Gaussian mixture model (GMM) whose context-dependent
mixture weights are estimated with a sentence-level discrim-
inative training criterion. The estimation problem is casted
in a neural network framework, which enables the incorpo-
ration of the appropriate constraints on the mixture weight
vectors, and allows a straight-forward training procedure,
based on steepest descent.

Experiments conducted on the Callhome-English and
Switchboard databases show a signi�cant improvement of
the acoustic model performance, and a somewhat lesser im-
provement with the combined acoustic and language mod-
els.

1. INTRODUCTION

Many factors contribute to the relatively high error rates
observed in LVCSR systems (e.g. diversity of speaking sty-
les, pronunciation variants, variable degrees of articulation,
noises, channel e�ects). By enlarging the set of possible
acoustic realizations for each phone or phone state, these
factors cause the acoustic models to have broad overlap-
ping distributions, which in turn increases the chances of
misrecognition. For this same reason of acoustic diversity,
the amount of training data and the e�ciency with which
it is used are critical factors in the performance of LVCSR
speech recognizers.

The modeling technique described in this paper ad-
dresses these two issues: it makes e�cient use of the train-
ing data by allowing a maximum of data sharing between
di�erent states of each phone, and it attempts to limit the
overlap between phone models by training them in a dis-
criminative fashion.

In the past few years, the trend in acoustic model-
ing has been to de�ne triphone clusters, and model each
cluster with a relatively small number of Gaussians. Such
clusters were derived through acoustic-based agglomerative
clustering of triphone states (e.g. [1]), or with the help of bi-
nary decision trees based on contextual linguistic features
(e.g. [2]). Triphone-cluster modeling o�ered a more de-
tailed modeling of co-articulation e�ects than previously
used phonetically tied mixture (PTM) models, and impro-
ved recognition accuracy [1, 2].

Recently, however, large PTM systems were shown to
o�er an attractive alternative to triphone-cluster models

[3]. N-best lists rescoring experiments on the Callhome-
Spanish database showed that context-independent phone
GMMs could lead to the same word error rates as context-
dependent decision-tree models, provided that the number
of Gaussians in each phone model was su�cient, i.e. compa-
rable to the total number of Gaussians in all the leaf nodes
of the corresponding trees [3].

The main advantage of large PTM systems over small
triphone-cluster models is the sharing of all the data aligned
to a speci�c phone to train its model. This advantage may
however be o�set by the increased acoustic space coverage of
each model and hence by the increased possibility of overlap
between model distributions.

In this paper, we focuss on improving the discriminative
power of large PTM systems by re-estimating the mixture
weights of the phone GMMs for di�erent contexts, using a
discriminative optimization criterion. Various approaches
to discriminative training of acoustic models have been pro-
posed in the literature, e.g. [4, 5, 6, 7]. Because we wish
to use the discriminative PTM models to rescore N-best
lists of hypotheses, and because we believe that a global
(sentence-level) training criterion will be more closely re-
lated to the recognition metric (here, the word error rate
(WER)), we propose to train the models to maximize the
average log-posterior probability of the correct transcrip-
tions of the training sentences.

2. DISCRIMINATIVE MIXTURE WEIGHT
ESTIMATION

Each phone in the context-dependent (CD) PTM system is
modeled with a Gaussian mixture model, according to

p(xk j'; i) =

N'X
g=1

P i
gNg(xk); (1)

where ' indicates the phone being modeled, i refers to a spe-
ci�c context realization or triphone cluster of ', and P i

g and

Ng(xk) represent, respectively, the gth context-dependent
mixture weight in cluster i, and the gth context-independent
Gaussian distribution evaluated for the observation xk. In
our implementation, triphone clusters are generated with
linguistically-driven decision trees (DTs), so that the index
i indicates the ith leaf node of the DT corresponding to
phone '. (To be more precise, three DTs are built for each
phone (one per state), and i indexes the leaf nodes across
all three DTs.)



Given a set of data clusters for each phone, the problem
is to estimate the corresponding mixture weight distribu-
tions. Because the mixture weights must satisfy 0 � P i

g � 1

and
P

g
P i
g = 1, this is a constrained optimization problem.

The approach we follow here is to cast this estimation prob-
lem in a neural network framework, as depicted in Fig. 1.
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Figure 1: Neural network representation of the mixture
weight estimation procedure.

The set of mixture weight vectors for all the contexts of
a phone can be seen as a two-layer feedforward neural net-
work (NNet) whose inputs are all zero, besides the one that
corresponds to the cluster index of the current observation,
which is set to one. The outputs of the NNet are passed
through a softmax nonlinearity [8] to ensure that the above
constraints on the mixture weights are satis�ed.

According to the usual NNet methodology, an optimiza-
tion criterion can then be de�ned, and the mixture weights
can be iteratively updated, following a steepest descent ap-
proach.

2.1. Discriminative Training of the MixtureWeights

As mentioned previously, we wish the training criterion to
be discriminative, closely related to the recognition error
metric (the WER), expressible in an N-best list framework,
and { to make a steepest descent approach feasible { con-
tinuous in the parameters to optimize, i.e. the mixture
weights. One such criterion is the average log-posterior
probability of the correct transcriptions of the training sen-
tences,

� =
1

Ns

NsX
s=1

log P (W s
c j Xs) (2)

P (W s
c j Xs) =

p(Xs;W
s
c )

p(Xs;W s
c ) +

PNh
h=1

p(Xs;W s
h)

; (3)

where Xs = [x1; :::;xk; :::xK] denotes the sequence of acous-
tic observations for sentence s,W s

c andW s
h denote the word

sequences in the correct transcription and in the hth hy-
pothesis of sentence s, P (W s

c j Xs) denotes the posterior
probability of the correct transcription given the acoustic
observations, and Ns and Nh denote, respectively, the num-
ber of training sentences and the N-best list depth.

This criterion is similar to the N-best list implementa-
tion of the maximum mutual information criterion [5, 9],
except that we include the joint probability of the obser-
vations and the correct word sequence in the denominator.

This modi�cation enables an intuitive interpretation of the
mixture weight update formula.

The joint probabilities in Eq. 3 can be expanded into
products of language and acoustic model probabilities (cor-
rected by the language model weight, �):

p(W s
c=h;Xs) = pLM (W s

c=h) pAM (Xs jW
s
c=h)

1=�: (4)

The neural network weights are adapted proportionally to
the sentence-level instantaneous gradient of �,

r̂� � = r� log P (W s
c j Xs) (5)

=
X
h

Ps(h)
h
r log pAM (c)�r log pAM (h)

i
(6)

where � denotes the set of all the mixture weights, and
where, with the independence assumption, log pAM(:) can
be rewritten as a sum of frame log-likelihoods.

Eq. 6 can be interpreted as follows. First, the weighted
sum over the hypotheses gives more importance to the hy-
potheses whose posterior probabilities, Ps(h), are larger.
Second, for a given reference-hypothesis pair, (c; h), the
mixture weights are adjusted only for the frames xk for
which the reference and hypothesis strings do not coincide
(pAM (xk j c) 6= pAM (xk j h)). In that case, positive train-
ing is given to the correct model (c) and negative training
is given to the erroneously hypothesized model (h). This
is overall an intuitively satisfactory behavior. In practice,
however, we slightly modify this update procedure: Eq. 6
implies that a weight update would occur also for the frames
and model pairs (c; h) whose phone labels agree but whose
triphone labels are di�erent. Because we don't want to dis-
criminate between allophones of the same phone, we instead
perform the weight update only when the phone labels of
the reference and hypothesis strings are di�erent.

Note that, alternatively to a log-posterior criterion, we
could have optimized the (linear) posterior probability of
the correct sentences. We chose not to do this because, since
rP (W s

c ) = P (W s
c )rlog P (W

s
c ), it would have introduced a

multiplicative term P (W s
c j Xs) in Eq. 6, with the e�ect of

giving less training to the sentences with small probability
of being correct, which we thouhgt was intuitively undesir-
able.

To summarize the algorithm, the set of mixture weights
�n at time n is updated according to

�n+1 = �n +��n (7)

��n = � r̂�n�; (8)

where � is a constant that governs the learning rate, r̂�n�
is given by Eq. 6, and where the gradients of the frame log-
likelihoods are backpropagated through the GMMs and the
NNets output nonlinearities to update the neural network
parameters.

3. RECOGNITION EXPERIMENTS

3.1. Baseline System and Database

The baseline system for this work is a speaker-independent
speech recognition system based on continuous-density, ge-
nonic hidden Markov models [1]. It uses a multi-pass recog-



nition strategy, with a vocabulary of 33,275 words, non-
cross word acoustic models and a trigram interpolated lan-
guage model. Its training data consists of a mix of Callhome-
English and Switchboard conversations. The total number
of training sentences was 121K male sentences and 149K fe-
male sentences. The test data consists of the NIST-de�ned
Eval'97 test set, which contains 1.7K male and 2.8K female
sentences. The baseline system was used to generate N-best
lists for all the training and testing data.

3.2. Experiment Description

As a �rst step, we trained two sets of context-dependent
DTs (one per gender), to be used as a triphone clustering
tool. All the training data was used to train the DTs. A
stopping criterion of 1280 frames per leaf node was imposed
to ensure that each cluster contains enough data.

We then trained two sets of moderate size context-inde-
pendent (CI) PTM models (up to circa 450 Gaussians per
phone). The exact number of Gaussians in each phone
model was made equal to the number of leaf nodes in the
corresponding DTs, that is about 1=16th or 1=32th of the
total number of Gaussians we would have used in DT-based
triphone models.

Context-dependent discriminative mixture weights were
then estimated by looping over the randomized training sen-
tences, aligning the top-N hypotheses with the CI models,
computing the posterior probabilities of each hypothesis,
adapting the mixture weights according to Eqs. 6-8, and
repeating the process for several training epochs. To re-
duce the training time, we limited the N-best list depth to
5 hypotheses, and trained the models with only 10K (male)
and 6K (female) sentences chosen at random from the train-
ing set (half Switchboard, half Callhome). The convergence
process was monitored by computing the performance of the
models on Eval'97 after each training epoch. No learning
rate scheduling was used, so that the test set performance
was used solely to decide when to stop training the weights,
not to regulate the gradient step sizes.

WERs on the test sets were computed based on acoustic
scores (log-likelihoods of the hypotheses) as well as based
on combined acoustic and language model scores (Eq. 4)
(later refered to as \AC" and \AC+LM", respectively).
The test sentences were rescored with three di�erent N-
best list depths: 20, 10, and 5 hypotheses. After increas-
ing the vocabulary size in the baseline system, new sets of
N-best lists were generated for the test data, and the per-
formance of the converged models was re-evaluated. On
the male data, with the improved N-best lists, the average
log-posterior of the correct sentences improved from -7.21
to -4.93 as a result of the discriminative training, and the
average (linear) posterior probability increased from 0.19
to 0.30 (chance would be 1/6 = 0.166, since the posterior
probabilities are computed over 5 hypothesis and one refer-
ence strings). Similar numbers were obtained in the other
three cases.

Tables 1-4 report the WERs with the CI and discrimi-
native CD models. They show that, for both genders and
for both sets of N-best lists, the discriminative training of
the PTM mixture weights signi�cantly improved the per-
formance of the models (from 1.3 and 3.4 % relative de-

pending on the experiment, with 5 hypotheses). However,
the improvement brought by the language model somewhat
outweighted the acoustic gain, especially for the male mod-
els. This came as a surprise since the language model is
included in the training criterion, via the computation of
the posterior probabilities of the hypotheses.

# hyps GMMs NNets
AC AC+ LM AC AC+ LM

20 66:09 60:52 63:82 59:72
10 64:60 59:86 62:54 59:10
5 63:07 59:65 61:36 58:87

Table 1: Rescoring WER with GMMs and NNet mod-
els. Original N-best lists. Female test set Eval'97, 2.8K
CH+SWB sentences.

# hyps GMMs NNets
AC AC+ LM AC AC+ LM

20 66:83 61:31 65:00 61:72
10 65:44 60:77 63:19 60:68
5 63:68 60:44 62:07 60:35

Table 2: Rescoring WER with GMMs and NNet models.
Original N-best lists. Male test set Eval'97, 1.7K CH+SWB
sentences.

# hyps GMMs NNets
AC AC+ LM AC AC+ LM

20 57:59 53:30 55:70 52:41
10 56:41 52:67 54:52 51:84
5 55:17 52:24 53:29 51:58

Table 3: Rescoring WER with GMMs and NNet mod-
els. Improved N-best lists. Female test set Eval'97, 2.8K
CH+SWB sentences.

4. CONCLUSION

Motivated by the intuition that the high error rates ob-
served with LVCSR databases are caused in great part by
large overlaps between phone distributions, we proposed an
acoustic modeling architecture in which each phone is mod-
eled with a large Gaussian mixture model whose mixture
weights are estimated in a context-dependent fashion by
optimizing a sentence-level discriminative criterion between
phones. The estimation process was casted in a neural net-
work framework, and the mixture weights were optimized
using a steepest descent approach.

Experiments with relatively small size models showed a
signi�cant improvement of the acoustic models, although
the error-rate reduction brought by the language model



# hyps GMMs NNets
AC AC+ LM AC AC+ LM

20 60:43 55:60 59:00 56:06
10 58:83 55:20 57:71 55:54
5 57:37 54:76 56:64 54:68

Table 4: Rescoring WER with GMMs and NNet mod-
els. Improved N-best lists. Male test set Eval'97, 1.7K
CH+SWB sentences.

somewhat outweighted this gain. This point remains to be
investigated. It may be due to the fact that the language
model is given too much relative importance by being in-
corporated in the acoustic model update as well as being
added to the acoustic model scores in the traditional way
(Eq. 4).

Current experiments include training large PTM sys-
tems (up to 2000 Gaussians per phone), with N-best lists
depths of 10 and 100 hypotheses.
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