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ABSTRACT

In this paper we show that accurate HMMs for connected
word recognition can be obtained without context depen-
dent modeling and discriminative training. We train two
HMMs for each word that have the same, standard, left to
right topology with the possibility of skipping one state, but
each model has a different number of states, automatically
selected. The two models account for different speaking
rates that occur not only in different utterances of the speak-
ers, but also within a connected word utterance of the same
speaker.
This simple modeling technique has been applied to con-
nected digit recognition using the adult speaker portion of
the TI/NIST corpus giving the best results reported so far
for this database. It has also been tested on telephone speech
using long sequences of Italian digits (credit card numbers),
giving better results with respect to classical models with a
larger number of densities.

1. INTRODUCTION

Two important issues for the classical HMMs are duration
modeling and the so called trajectory folding phenomenon [4].
The latter happens because the characteristics of the speak-
ers (their sex and speaking rate, for example) and all the
other variabilities are merged into the models by using mix-
tures of densities associated to each state. This capability
of merging highly variable information within a state, in-
creasing the number of components of state mixtures, is
one of the main reasons for the flexibility and the success
of HMM modeling. This merging, however, has a cost in
terms of discrimination capability: during recognition there
is no mean to impose continuity constraints on the trajectory
that a point in the parameter space follows as the articula-
tory system changes. Thus, an observation sequence can be
recognized with high probability using a sequence of states
and densities which have never been observed in the train-
ing set, leading to misrecognitions.

To solve these problems it has been proposed to train trajec-
tory models [4] or trended HMM with state dependent, time
varying Gaussian means [1].

In [5] we have proposed to face the duration and trajectory
folding problems by relying on the evidence that some vari-
ability of the data is a priori known and can be modeled
separately. The most evident source of variability is, of
course, the female/male distinction, therefore, as usual in
many systems, we train gender dependent models. Another
important contribution to accurate modeling, however, is the
definition of two HMMs for each word that must be trained:
one “short” model for fast uttered words, and another “long”
model for more articulated pronunciations. For short words,
like digits, the number of states of each model must be rel-
atively large, in comparison with standard HMMs, so that
it accounts for less than two frames per sentence on the av-
erage. Although the resulting system has a relatively large
number of states, similar or even better results are obtained
with a reduced number of densities compared with standard
models.

In this paper we report further improvements by using high-
pass filtering of the cepstral parameters and their second or-
der derivatives. This modeling technique has also been used
for a telephone speech application using long sequences of
Italian digits (credit card numbers). Even for this database
better results are reported with respect to classical models
with a larger number of densities.

The organization of the paper is as follows. Section 2 recalls
the motivations for different sets and topologies of models
and illustrates the approach used to obtain automatically the
number of states for each word model. The model training
procedure is described in Section 3 and the results obtained
using the set of models introduced in Section 2 are presented
in Section 4.1 and 4.2 respectively.



2. MODEL TOPOLOGY SELECTION

Our simple approach toward accurate acoustic and duration
modeling for whole word connected word recognition, de-
fines a “short” and a “long”, gender dependent, HMM for
each word that must be trained.
The rational behind this choice is to account for different
speaking rates, occurring not only in different utterances of
the speakers, but also within a connected word utterance of
the same speaker [5].
A single model, therefore, even if it is provided with skip
transitions, don’t seem adequate neither for duration nor for
accurate acoustic modeling. The latter is true because the
acoustic realizations of fast and slowly uttered words are
likely to be different.
Our models have the same, standard, left to right topology,
with the possibility of skipping one state, but each model
has a different number of states.
For each wordw, the number of states of its two HMMs is
selected according to the following steps:

� The duration of every occurrence of wordw in the
training set is generated by a forced alignment, using
the set of models currently available.

� The histogram of the duration of all the (Nw) utter-
ances ofw is obtained. Then the histogram values
are cumulated up toNw=4, Nw=2, and3=4 � Nw re-
spectively, and their corresponding duration values
recorded.

� The number of states assigned to “short” and “long”
duration models of wordw corresponds to the first
and last duration value respectively. The central value
is used, instead, as a duration threshold in the training
procedure.

Figure 1 shows the cumulative distribution of the duration
of the male speaker training utterances of digit ONE in the
TI/NIST database, and the number of states selected for this
HMM model according to the above described procedure.
Each word occurrence in the training set, then, contributes
to the reestimation either of a “short” or of a “long” model:
the decision is based on its duration compared with the du-
ration threshold.
Table 1 shows the number of states obtained for each word
model in the TI/NIST database and in the telephone speech
Italian digit database described in Section 4.2
It is worth noting that the resulting number of states of each
model is comparable to the duration of its training samples,
thus, the average occupation of each state is about one frame
per sentence on the average. This contributes to the reduc-
tion of the trajectory folding phenomenon.
It can be observed that the Italian digit models are longer
than the corresponding English digits. This effect is partly
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Figure 1: Cumulative distribution of the duration of the
male speaker training utterances of digit ONE

due to the speaking style of some Italian speakers contribut-
ing to this database that did sometimes include long pauses
between words, reducing their speaking rate.

3. TRAINING

In our systems, training is performed by a few iteration of a
segmental K-means Viterbi alignment procedure that allows
the number of densities for each state to be automatically
selected to fit the actual distribution of the training data as
described in [3]. Since the number of states of each models
corresponds to the average duration of short and long utter-
ances of a word, it is large enough to allow accurate acoustic
and duration modeling using a small number of densities per
mixture. The maximum number of densities per state mix-
ture was fixed to 8 and 4 for the reported experiments on the
TI and Italian database respectively.
Training is performed by iterating the following steps:

1. Generation, for each training sentence, of its HMM
graph including the sequence of the appropriate “short”
or “long” models according to the alignment obtained
using the current set of models.

2. segmental K-means Viterbi alignment

Few iterations are required to select the appropriate number
of densities for each state, then, several Baum-Welch es-
timation iterations are performed, keeping fixed the HMM
graphs, until a convergence threshold is satisfied.

4. EXPERIMENTAL RESULTS

4.1. TI/NIST database

The first set of experiments has been performed on the 20KHz
TI/NIST connected digit corpus of adult speakers includ-



TI Models oh zero one two three four five six seven eight nine
Baseline 16 34 22 22 22 28 30 24 40 20 20

Short model 20 35 24 20 24 27 30 33 36 20 28
Long model 35 49 39 34 38 43 50 52 47 31 43

Threshold 27 42 30 26 31 35 38 40 41 24 36

Italian Models zero uno due tre quattro cinque sei sette otto nove
Baseline 36 32 28 26 40 40 30 38 32 30

Short model 38 32 32 24 40 40 34 42 36 30
Long model 58 48 52 40 62 64 56 68 56 50

Threshold 48 40 42 32 52 54 46 54 46 40

Table 1: Number of states for baseline, “short” and “long” duration HMMs, and duration thresholds

ing 8700 sentence (28583 words) for testing. The signal is
passed through a preemphasis filter and every 10 ms a 20
ms Hamming window is applied. A 512 point FFT is then
performed and the frequency range up to 8 KHz subdivided
into 20 Mel-scale filters is used to obtain 12 cepstral coeffi-
cients.
The observation vector used in the recognition experiments
reported in this paper includes up to 39 parameters: 12 liftered
cepstral coefficients (C1 � C12), and their first and second
order derivatives, the energy, and its first and second order
derivatives. In these experiments, we did not perform any
energy normalization, but significant improvements were
obtained by high-pass filtering the cepstral parameter.
The results in terms of word and string error rates are shown
in the Table 2. They have been obtained with unknown
length decoding using the followinggender dependentacous-
tic models:

� The baseline system has a single model per digit with
8 Gaussian densities per state and a single state si-
lence model with 16 Gaussian densities.

� The double model systems include two models per
word with a maximum of 1, 4 or 8 Gaussian densi-
ties per state and a single state silence model with 16
Gaussian densities.

It is worth noting that, despite a very small word insertion
penalty, the number of insertion errors is particularly low for
the two models systems. This is due to the relatively large
number of states used for the models, that cannot be easily
traversed by observation sequences that do not fit well their
distributions.
The obtained results are comparable with the best ones re-
ported in the literature for models with a larger number of
densities. In particular, the error rate of the 4 Gaussian
double model system without high-pass filtering and sec-
ond order derivatives is comparable with the result in [2] -
93 (0.33%) WER 84 (0.97%) SER - for their MLE trained

baseline system with 840context-dependentstates, 26880
Gaussian models, (they reach 0.24% WER and 0.72% SER
with discriminative training), and with those presented in [6]
- 99 (0.35%) WER 0.98% SER - using 716 states and 45824
densities, (their best result is 0.24% WER 0.74% SER using
22812 densities andLinear Discriminant Analysis).
Using a maximum of 8 densities per state, and a total of
9320 densities, our best word and string error rate on the
TI/NIST corpus are 0.24% and 0.71% respectively, that is
the best performance reported so far on this database.

4.2. Italian telephone digit database

A second experiment has been performed on a 8KHz sam-
pled, telephone line, connected digit corpus including 8539
sentence for training and 2472 sentences (38533 words) for
testing. The training sentences are composed of utterances
including up to 16 digits. Most of the test sentences are
credit card numbers (string length 16), but there are also
several samples of 15 and 17 digit sequences.
The same preprocessing is performed on the signal, but a
256 point FFT is applied to every 10ms window frame, and
12 Mel cepstral coefficients are computed. The energy and
the high-pass filtered cepstral parameters and their first and
second order derivatives are included in the observation frame.
A set of gender independentdouble models per word has
been trained to compare its performance with respect to an
existing gender independent single model system. In partic-
ular:

� The baseline system has a single model per digit with
a maximun of 16 Gaussian densities per state, a single
state silence model with 32 densities, and a 26 state
models for long pauses, with 16 Gaussian densities
per state.

� The double model systems include two models per
word with a maximum of 4 Gaussian densities per



Acoustic models Densities sub/del/ins WER (%) SER (%)
No high-pass Baseline (8 G) 4292 74/38/26 138 (0.48%) 107 (1.23%)

filtering Two models (1 G) 1548 106/75/20 201 (0.70%) 172 (1.98%)
No delta-delta Two models (4 G) 5497 54/35/4 93 (0.33%) 82 (0.94%)

Two models (8 G) 9021 52/31/7 90 (0.31%) 79 (0.91%)

High-pass Baseline (8 G) 4292 55/29/23 107 (0.37%) 95 (1.09%)
filtering Two models (1 G) 1548 94/62/13 169 (0.59%) 147 (1.69%)

No delta-delta Two models (4 G) 5212 52/27/8 87 (0.30%) 80 (0.92%)
Two models (8 G) 9384 42/28/10 80 (0.28%) 72 (0.83%)

High-pass Baseline (8 G) 4292 52/26/23 101 (0.35%) 92 (1.06%)
filtering Two models (1 G) 1548 86/53/11 150 (0.52%) 133 (1.53%)

Delta-delta Two models (4 G) 5480 50/19/8 77 (0.27%) 69 (0.79%)
Two models (8 G) 9320 40/20/8 68 (0.24%) 62 (0.71%)

Table 2: Performance comparison of the proposed modeling on the TI/NIST database

Acoustic models Densities sub/del/ins WER (%) SER (%)
High-pass filtering Baseline (16 G) 5983 184/100/80 364 (0.94%) 238 (9.6%)

Delta-delta Two models (4 G) 3623 179/112/65 356 (0.92%) 231 (9.3%)

Table 3: Performance comparison of the proposed modeling on the Italian database

state, a single state silence model with 16 Gaussian
densities, and a 26 state model for long pauses, with
4 Gaussian densities per state.

The results of the comparison shown in the Table 3, con-
firm the effectiveness of our models even for a noisy tele-
phone environment. Again, similar or slight better results
have been obtained using a system with 60% of the den-
sities of our baseline system. The relatively high sentence
error rate, compared with a low word error rate, is not sur-
prising because unknown length decoding is performed on
very long digit strings.

5. CONCLUSIONS

In this paper we presented a simple modeling and training
approach trying to cope with duration and trajectory folding
problems.
The experimental results show that a significant error rate
reduction can be obtained with respect to the classical HMM
models. Moreover, our results are comparable or better than
the best ones reported in the literature for models with a
larger number of densities without requiring context depen-
dent modeling and discriminative training. Due to the sim-
plicity of this modeling, further improvements can be ex-
pected using LDA and discriminative training.
We are also currently experimentig this approach for sub-
word unit modeling.
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