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ABSTRACT

We consider blind separation of linear mixtures of digital commu-
nication signals in noise. When little or nothing can be assumed
about the mixing matrix, signal separation may be achieved by ex-
ploiting structural properties of the transmitted signals. ILSP and
ILSE are two iterative least squares (ILS) separation algorithms
that exploit the finite-alphabet property. ILSE is monotonically
convergent and performs very well, but its complexity is exponen-
tial in the number of signals; ILSP is computationally cheaper, but
is not guaranteed to converge monotonically, and leaves much to
be desired in terms of BER-SNR performance relative to ILSE. We
propose two computationally efficient and provably monotonically
convergent ILS blind separation algorithms based on an optimal
scaling Lemma. The signal estimation step of both algorithms is
reminiscent of Successive Interference Cancellation (SIC) ideas.
For well-conditioned data and moderate SNR, the proposed algo-
rithms attain the performance of ILSE at the complexity cost of
ILSP.

1. INTRODUCTION AND DATA MODELING

Consider the instantaneous multiple-input multiple-output model:

X = AS+V (1)

whereX is the observablem�N data matrix,A is anm� d
mixing matrix,S is ad�N signal matrix,V is anm�N matrix
of i.i.d. Gaussian random variables, and it is assumed thatm � d,
N � d, andA andS are full rank (d). This model arises, e.g.,
in the context of antenna array reception ofd narrowband sources
impinging on an array ofm antennas, whereby Equation (1) de-
scribes the discrete-time baseband equivalent model after down-
conversion, matched filtering, and sampling at the symbol rate,
assuming small delay spread, Nyquist pulse shaping, and fixed
propagation environment overN symbols. In this scenario, the
ith row of S contains the symbol sequence corresponding to the
ith source.

In the absence of noise, the objective of blind source separa-
tion is to factorX intoA andS by exploiting known properties of
either (or both) ofA, S. One approach is to constrainS to satisfy
known structural properties, e.g., finite alphabet or constant mod-
ulus [1, 3, 4, 5, 6, 7, 8]; let us denote this byS 2 �. GivenX, d,
and� a key issue is whether or not the factors are unique (modulo
the inherent permutation and scale ambiguity); this is addressed in
[1] for the finite-alphabet (FA) property. In the presence of noise,
an optimal factorization is sought, e.g., in the least squares (LS)
sense:

min
A;S2�

kX�ASk2F (2)
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which coincides with conditional maximum likelihood (treatingA
andS as deterministic unknowns).

Even though the model in Equation (1) appears to be quite
restrictive due to its memoryless nature, more complicated convo-
lutive models can be reduced to Equation (1) by means of blind
equalization techniques [3].

2. PRIOR ART

The optimization problem in (2) is a bilinear nonparametric regres-
sion subject to structural constraints on one of the factors. Iterative
Least Squares (ILS - also known as Alternating Least Squares,
ALS) is one means of solving (2). The basic idea behind ILS is
simple: each time compute a LS update foroneof the unknown
factors, conditioned on a previously obtained estimate for the other
factor; proceed to update the other factor in a similar fashion; re-
peat until convergence. Global (from an arbitrary starting point)
convergence to a feasible solution that achieves (at least) a local
minimum of the cost function is guaranteed, by virtue of the fact
that each (conditional LS) update may either improve or maintain,
but cannot worsen the fit. The quality (fit) of the final output is
generally dependent on the initialization.

The identifiability of the model in Equation (1), and associ-
ated ILS algorithms for the important special case that� is a
finite-alphabet constraint (usually denoted by
) have been con-
sidered in [1]. Two ILS algorithms have been proposed: Iterative
Least Squares with Enumeration (ILSE), which is a true ILS algo-
rithm, and Iterative Least Squares with Projection (ILSP), which
is a much simpler pseudo-ILS algorithm. These are reviewed next.

Iterative Least Squares with Enumeration(ILSE):

1. GivenA0; k = 0

2. k = k + 1

� LetA = Ak�1 in Equation (3) below, and minimize
for Sk (enumeration).

� Ak = XS
H
k (SkS

H
k )

�1

3. Repeat 2. until(Ak;Sk) � (Ak�1;Sk�1):

min
S2


kX�ASk2F =min
s(1)2


kx(1)�As(1)k2F+� � �

+ min
s(N)2


kx(N)�As(N)k2F (3)

In the above,(�)H stands for Hermitian transpose, and each of
theN minimizations in (3) is carried out by enumeration over all
possible finite-alphabetd-tuples1. ILSE is a true ILS algorithm
(guaranteed to converge, actually in a finite number of steps in this
case [1]) but prohibitively complex even for moderated. ILSP is a
computationally cheaper alternative.

1We use
 to denote the FA restriction on vectors and matrices alike.



Iterative Least-Squares with Projection (ILSP):

1. GivenA0; k = 0

2. k = k + 1

� bSk = (AH
k�1Ak�1)

�1
A
H
k�1X

� Sk = proj
[bSk]

� Ak = XS
H
k (SkS

H
k )

�1

3. Repeat 2. until(Ak;Sk) � (Ak�1;Sk�1):

Hereproj
[�] projects its matrix argument onto the finite alphabet
element-wise. In ILSP, the computationally demanding enumera-
tion step is replaced by a finite-alphabet projection of the uncon-
strained LS update. Unfortunately, the resulting iteration is not
a true ILS algorithm: the two-step update is not necessarily LS-
optimal, and it may actually worsen the fit. This means that ILSP
is not guaranteed to converge in general (it usually does in prac-
tice). ILSP is more prone to spurious minima than ILSE, and it
tends to provide measurably worse results. On the other hand, the
complexity of ILSP isO (Nmd) per iteration, while ILSE requires
O (NmdLd) per iteration (recall that bothm;N are� d), where
L is the size of the FA.

3. PROPOSED ALGORITHMS

ILSE computes a true conditional LS update forS by enumeration
over the finite alphabet for each individual column ofS (taking
advantage of the decomposability of the Frobenious norm) - thus
computing a simultaneous LS projection for all source symbols
corresponding to a given time index. On the other hand, ILSP
projects the unconstrained LS update ofS onto the finite alphabet.
Note that ILSP updates all columns ofS simultaneously, but in
a suboptimal fashion. The core idea behind both algorithms pro-
posed herein can be summarized as follows. Instead of updating
S suboptimally as a whole, or optimally one column at a time (the
latter being very complex), update one row ofS at a time, con-
ditioned onA and the remaining rows ofS. This is reminiscent
of Successive Interference Cancellation (SIC) ideas [11], since it
uses previously obtained estimates of other users to “cancel” the
multiuser interference and obtain an improved estimate for a user
of “current interest”. The difference with SIC is that our problem
is blind (the mixing is unknown), and the process shifts back and
forth between estimating the mixing matrix and updating the esti-
mated user symbol streams. Interestingly, it turns out that the op-
timal update of one row ofS conditioned on all other rows is easy
to compute - in fact it is equivalent to projecting the unconstrained
LS row update to the finite alphabet. Contrast this with the ILSE
update of one column ofS at a time - which is optimal, but re-
quires enumeration over all possible finite-alphabetd-tuples. The
optimality of projecting unconstrained LS row updates is a rami-
fication of the followingoptimal scaling Lemma(a simple proof
appears in [2]):

Lemma 1 LetX be a givenm�N matrix, anda 6= 0 be a given
m� 1 vector. The problemmins2� kX� asHk22 is equivalent to
mins2� kb�sk

2
2, whereb stands for theunconstrainedminimizer

of kX� asHk22 with respect tos, i.e.,b
4
= 1

kak2
2

X
H
a. The above

holds for general� (not necessarily finite-alphabet constraints).
Note that, depending on�, the constrained solution may or may

not be unique; we denoteproj�(b)
4
= argmins2� kb�sk

2
2, with

the understanding that it stands for “anargument that minimizes
...”.

To see how the above Lemma applies to the problem at hand, iso-
late one row ofS, say rowr, and denote it bysHr . Let ar be the
corresponding column ofA, and consider the LS update forsHr
conditioned on everything else:

min
sr2


kX�ASk2F = min
sr2


kX�A(r)
S
(r) � ars

H
r k

2
F

= min
sr2


keX(r) � ars
H
r k

2
F

whereA(r) : m � (d � 1) consisting of all but therth column
of A, S(r) : (d � 1) � N consisting of all but therth row of
S, and eX(r) is the equivalent data matrix. It follows that the LS
update forsr is given byproj
( 1

kark
2

2

(eX(r))Har). This leads to

the following algorithm.

Successive Interference Cancellation Iterative Least-Squares
(SIC-ILS):

1. k = 0; S0 = random FA;A0 = XS
H
0 (S0S

H
0 )�1.

2. k = k + 1

� S-Update:

– Sk = Sk�1;
– for r = 1 to d,
– ar = rth column ofAk�1;
– s

H
r = rth row of Sk;

– eX
(r) = X� (Ak�1Sk � ars

H
r );

– rth row of Sk = proj
(
1

kark
2

2

a
H
r
eX
(r));

– end

� A-Update:Ak = XS
H
k (SkS

H
k )

�1

3. Repeat 2 until(Ak;Sk) � (Ak�1;Sk�1):

Notice that the update of a given row depends on all previously
obtained updates of all other rows. An interesting twist is that
different row update orders may give rise to different trajectories in
the search space, exhibiting different convergence rates and BER-
SNR performance characteristics. One way of resolving this issue
is as follows. At any given point in time, one mayrank possible
row updates according to the resulting improvement in fit; pick
the one that provides the best improvement; repeat. This is well-
motivated from an optimization viewpoint (it results in a step-wise
steepestdescent), and it also makes sense in a near-far situation,
since row updates corresponding to more powerful users are likely
to lead to more significant improvements in fit. This idea gives rise
to the following algorithm.

Ranked Successive Interference Cancellation Iterative Least-
Squares (RSIC-ILS):

1. k = 0; S0 = random FA;A0 = XS
H
0 (S0S

H
0 )�1.

2. k = k + 1

� S-Update:

– Sk = Sk�1;
– Designate all rows as being “active”;
– while active rows exist,
– for each active row (say, row-r):
– Tr = Sk;
– ar = rth column ofAk�1;
– s

H
r = rth row of Sk;

– eX
(r) = X� (Ak�1Sk � ars

H
r );

– rth row ofTr = proj
(
1

kark
2

2

a
H
r
eX
(r));



– cost(r) = kX�Ak�1Trk
2
F ;

– end for;
– Pick thebr with minimum cost(r); updateSk =
T
br
; de-activate thebrth row;

– end while

� A-Update:Ak = XS
H
k (SkS

H
k )

�1

3. Repeat 2 until(Ak;Sk) � (Ak�1;Sk�1):

Complexity: The per-iteration complexity of ILSP isO (Nmd),
while that of ILSE isO (NmdLd) [1]. The corresponding figures
for SIC-ILS and RSIC-ILS areO(Nmd), andO(Nmd2) respec-
tively. One should keep in mind the assumption thatm;N are� d
to properly interpret the order notation. The complexity claim may
not be obvious from the pseudo-code listings: it requires updating
theAk�1Sk matrix by subtracting the rank-1 contribution of row
r before its update, and adding the rank-1 contribution of rowr af-
ter its update (instead of actually computing the product, as listed
in the pseudo-code for clarity of exposition).

3.1. Convergence

Theorem 1 Both SIC-ILS and RSIC-ILS are globally monotoni-
cally convergent in a finite number of steps.

The proof is a consequence of Lemma 1: each row update may
either improve or maintain, but cannot worsen the fit. Thus both
SIC-ILS and RSIC-ILS are true ILS algorithms, guaranteed to con-
verge to (at least) a local minimum. Convergence in a finite num-
ber of steps follows from the fact that the cost function is decreas-
ing, and there is only a finite number of distinct possibilities forS

(due to the finite-alphabet constraint), each one of which is paired
with one LS update forA. In the worst case, the iteration will cy-
cle over all the distinct possibilities once. In practice, the number
of iterations before convergence is usually quite small (under 10
iterations). Notice that the same result applies (as shown in [1]) to
ILSE, but not to ILSP.

3.2. Incorporating FEC Constraints

Notice that Lemma 1 may be used to incorporate forward error
correction (FEC) constraints as well. To this end, one has to have
efficient means of computingmins2C kb � sk22, whereC is the
FEC codebook. In other words, one has to have an efficient al-
gorithm for computing the projection of a hypothetical “received
data” sequence onto the codebook. If the signals are convolution-
ally encoded, the sought algorithm is the well-known “soft” Viterbi
decoder for a AWGN channel. Similar algorithms are available for
many block codes as well. Note that (LS) optimality of the decod-
ing algorithm is crucial for maintaining monotone convergence of
the overall blind source separation iteration - suboptimal pseudo-
projections onto the codebook will not do. The main point here
is that Lemma 1 allows us to take advantage of FEC constraints
(meant to guard against noise) to improve blind source separation.

4. MONTE-CARLO RESULTS

We conducted a series of Monte-Carlo experiments to assess the
relative performance of ILSP, ILSE [1], SIC-ILS, and RSIC-ILS.
In our simulations,A corresponds to a ULA ofm = 4 sensors
(�=2 sensor spacing) receivingd = 3 BPSK signals arriving from
[10o; 30o; 50o] relative to the array broadside.N = 100, the el-
ements ofS are+1 or �1 (Eb = 1), andS is held fixed dur-
ing the simulation. 10,000 Monte Carlo trials were conducted for
eachEb

No
-BER datum reported. ILSP and ILSE are initialized with

A0 = Im�d, whereas SIC-ILS and RSIC-ILS are initialized with
randomS0. A maximum of two re-initializations (randomA0 for
ILSP/ILSE, randomS0 for SIC/RSIC-ILS) per trial were allowed
for each algorithm.

Figures (1), (2), and (3) present BER versusEb

No
results for

ILSP, SIC-ILS, and ILSE, respectively. Each Figure depicts three
separate curves, one for each source (“user”). Notice that, for low
to moderate SNR, SIC-ILS attains the performance of ILSE at the
complexity cost of ILSP. Also notice that, in contrast to ILSP, SIC-
ILS demodulates all three users at the same BER. We remark that
ILS algorithms (including ILSP and ILSE) exhibit a BER bounce-
back effect at higher SNR due to local minima [3].

Figures (4), (5) present the results of SIC-ILS, RSIC-ILS, re-
spectively, in a near-far scenario. Error rates are plotted versus the
Eb

No
of the weakest user. The other two users are 6 and 12 dB, re-

spectively, above the weakest user. The error rates for the strongest
user in Figure (5) drop below the statistical significance threshold.

Figure (6) presents coded SIC-ILS results for rate1
2

repetition-
coded signals. Error rates are plotted versusEb

No
percodedbit. As

expected, the incorporation of FEC constraints helps at low SNR.
This is particularly useful when the users are power-controlled, but
require a higher quality of service than what is available without
coding.

MATLAB code for all algorithms is available on-line at:
http://www.people.virginia.edu/ ˜ tl7d, ˜ nds5j .

5. DISCUSSION AND CONCLUSIONS

We have proposed two algorithms for blind separation of linear
mixtures of digital communication signals, SIC-ILS, and RSIC-
ILS. Both exploit the FA property, and an optimal scaling Lemma.
SIC-ILS and RSIC-ILS feature moderate complexity, global mono-
tonic convergence, and cover the intermediate ground in perfor-
mance in-between ILSP and ILSE. A bonus feature is that they
allow easy incorporation of FEC constraints into the basic itera-
tion. Future work includes the investigation of these ideas within
the framework of trilinear regression [9].
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