
ON SUBSPACE BASED SINUSOIDAL FREQUENCY ESTIMATION

Martin Kristensson , Magnus Jansson and Björn Ottersten

Department of Signals, Sensors, & Systems
Royal Institute of Technology (KTH)

Sweden

ABSTRACT
Subspace based methods for frequency estimation rely on a low-
rank system model that is obtained by collecting the observed scalar
valued data samples into vectors. Estimators such as MUSIC and
ESPRIT have for some time been applied to this vector model.
Also, a statistically attractive Markov-like procedure [1] for this
class of methods has been proposed in the literature. Herein, the
Markov estimator is re-investigated. Several results regarding rank,
performance, and structure are given in a compact manner. The
results are used to establish the large sample equivalence of the
Markov estimator and the Approximate Maximum Likelihood
(AML) algorithm proposed by Stoica et. al..

1. INTRODUCTION

Model based parameter estimation using subspace based methods
can be an attractive alternative to maximum likelihood estimation.
In order to apply subspace methods, a low rank signal model at
hand must be available. In some cases, like in array signal process-
ing, this structure is present directly in the received data vectors. In
other cases, e.g., sinusoidal frequency estimation, subspace system
identification and blind channel identification, the low rank vector
valued data structure can be obtained by applying a temporal win-
dow to the received data. Vector valued data models obtained from
an underlying scalar valued process are in this paper referred to as
windowed data models.

Intuitively, the statistical properties of subspace methods when
applied to windowed data models are different from models where
the low rank structure is physically present in the system. In this
paper, the statistical properties of subspace based estimators ap-
plied to windowed data models are examined using a subspace
based sinusoidal frequency estimator as an example. The focus is
thusnoton obtaining a new estimator, but rather on gaining insight
on the behavior of the studied class of methods. The estimator that
is analyzed here is close to the algorithm presented in [1].

Here, we extend the analysis in [1] and show that, by carefully
exploiting the structure, compact expressions for the estimation
error covariance can in fact be obtained. In addition, these ex-
pressions enable further analysis of the rank properties of certain
weighting and residual covariance matrices. These rank proper-
ties were left as an open question in [1], but they are in fact es-
sential when determining optimal weighting matrices. The results
presented here also make it possible to establish the large sample
equivalence of the Markov estimator and the approximate maxi-
mum likelihood approach (AML) in [6]. The equivalence implies
that the subspace approach provides the minimum asymptotic er-
ror covariance in the class of all estimators based on a given set of
covariance estimates.

2. DATA MODEL AND DEFINITIONS

TheN samples of the scalar-valued signaly(t) are assumed to
be the sum ofd complex-valued sinusoids in additive zero-mean
white Gaussian noise

xk(t) = �ke
i(!kt+�k); k = 1; : : : ; d; (1)

y(t) =
dX

k=1

xk(t) + n(t); t = 1; : : : ; N: (2)

Here,�k > 0 is the real-valued amplitude. The frequencies! =
[!1; : : : ; !d]

T are assumed to be distinct deterministic parameters,
and the phasesf�kg are assumed to be uniformly distributed on
[0; 2�) and mutually independent. The noise,n(t), is assumed to
be independent of the phases and to satisfy

Efn(t)nc(t� � )g =
(
� � = 0;

0 � 6= 0;
(3)

Efn(t)n(t � �)g = 0; (4)

where(�)c denotes complex conjugate. A low rank matrix repre-
sentation of the problem is obtained by collectingm > d received
samples in a column vector

y(t) =
�
y(t) y(t+ 1) : : : y(t+m� 1)

�T
: (5)

Here,(�)T denotes the transpose and(�)� will be used to denote the
complex conjugate transpose. To establish the widely used matrix
model for the vector valued system in (5) we introduce the notation

x(t) =
�
x1(t) x2(t) : : : xd(t)

�T
: (6)

This results in the matrix formulation

y(t) = Am(!)x(t) + n(t); t = 1; : : : ; N �m+ 1; (7)

where the additive noise vector,n(t), is defined similarly toy(t)
in (5) and them� d Vandermonde matrixAm(!) is given by

Am(!) =

2
6664

1 : : : 1
ei!1 : : : ei!d

...
...

ei(m�1)!1 : : : ei(m�1)!d

3
7775 : (8)

The argument! is omitted in the sequel when not required. The
covariance matrix,R, of the received windowed sequence is

R = Efy(t)y�(t)g = AmSA
�
m + �Im (9)



where the covariance matrixS of x(t) is diagonal with the ele-
ments� = [�21; : : : ; �

2
d]
T on the main diagonal. The subscript on

the identity matrix,Im, indicates the dimension of the matrix. The
eigendecomposition of the covariance matrix is central in subspace
based estimation methods and is given by

R =
mX
k=1

�kuku
�
k = Us�sU

�
s +Un�nU

�
n (10)

where the eigenvalues are indexed in descending order and

Us =
�
u1 : : : ud

�
; Un =

�
ud+1 : : : um

�
;

�s = diag[�1 : : : �d] ; �n = �Im�d: (11)

The matrixUs spans the same space asAm, which is often de-
noted the signal subspace. The matrixUn spans the orthogonal
complement, often referred to as the noise subspace. When work-
ing with subspace methods, it is in many cases advantageous to
use a parameterization of the noise subspace instead of the signal
subspace. In this problem, one noise subspace parameterization is
given by them� (m� d) matrix

Gm(g) =

2
66664

g0 : : : gd 0 : : : 0

0 g0 : : : gd
...

...
...

... 0
0 : : : 0 g0 : : : gd

3
77775

T

; (12)

where the parametersg =
�
g0; : : : ; gd

�T
are defined by

g0 + g1z
1 + : : :+ gdz

d = gd

dY
k=1

(z � e� i!k): (13)

ThatG�mAm = 0 is easy to verify using (12) and (13). The map-
ping from! to g is unique up to a complex scalar multiplication.
Since the roots of (13) lie on the unit circle, the polynomial can
be written such that its coefficients satisfy the complex conjugate
symmetry constraintgk = gcd�k for k = 0; : : : ; d.

3. SUBSPACE BASED ESTIMATOR

Subspace based estimators exploit the orthogonality between the
noise and the signal subspaces. With a sample estimate,Ûs, of
Us, calculated from the collected data samples, the orthogonality
can be expressed according to

�(!) = vec[Û�sGm(!)] � 0: (14)

Here,vec[�] is the vectorization operator. The notation�̂ is used to
denote estimated quantities. In the noiseless case, the matricesÛs

andGm are exactly orthogonal, and setting the above residual to
zero yields the true frequencies. When the estimate ofUs is not
exact but computed from the received data samples, then the fre-
quency estimates obtained by minimizing the norm of the residual
vector are consistent. Note that, for simplicity, the noise subspace
parameterization is considered to be a function of! rather than
g. The approach of [1] is to estimate! by minimizing a weighted
norm of particular linear combinations of the real and imaginary
parts of�(!) in (14). To describe this mathematically, we first
define the real valued residual vector

�r(!) =

�
Ref�(!)g
Imf�(!)g

�
= L

�
�(!)
�
c(!)

�
(15)

whereL is a simple transformation matrix containingI and� i I.
The investigated class of estimators can now be written

!̂ = argmin
!

Vr(!) (16)

Vr(!) = �
T
r (!)Wr�r(!); (17)

whereWr � 0 is a symmetric weighting matrix. The subscriptr
on a quantity indicates that it is real-valued. The method proposed
in [1] is a member in the class described in this section.

4. PRELIMINARIES

In what follows we discuss different alternatives for how to es-
timate the covariance matrixR from which Ûs in (14) can be
obtained. The most commonly used estimate ofR is

R̂ =
1

N �m+ 1

N�m+1X
k=1

y(k)y�(k): (18)

However, contrary toR, the sample estimatêR is not Toeplitz.
It turns out that from an analysis point of view it is beneficial to
work with sample estimates that are Toeplitz. A sample covariance
matrix that is Toeplitz can be obtained as follows. First, estimate
the scalar-valued autocorrelation function by, e.g.,

r̂(� ) =

(
1

N��

PN

t=�+1 y(t)y
�(t� � ) � = 0; : : : ;m� 1;

r̂�(�� ) � = �1; : : : ;�m+ 1;

(19)

then form the Toeplitz structured estimate

R̂T =

2
6664

r̂(0) : : : r̂(�m+ 1)
r̂(1) : : : r̂(�m+ 2)

...
...

...
r̂(m� 1) : : : r̂(0)

3
7775 : (20)

The difference between the two sample covariance matrices intro-
duced above is only due to “edge” effects. In particular, we have

R̂ = R̂T +O(1=N) (21)

whereO(1=N) is the statistical counterpart of the corresponding
deterministic quantity. As is well known, the asymptotic covari-
ance of the estimates is only dependent onO(1=

p
N) terms and

the two sample covariance matrices in (21) thus yield estimates of
the same accuracy when the number of samples is large. Observe
that, in the finite sample case,̂R may yield better estimates than
R̂T, this despite they are asymptotically equivalent. Since the sta-
tistical analysis is simplified considerably if the Toeplitz structure
can be used, we assume in the analysis thatR̂T is used in the es-
timator. However, note that the analysis is still valid for bothR̂T

andR̂.
Toeplitz matrices are completely determined by their first row

and column. These elements in the Toeplitz covariance matrix,R,
are for notational convenience collected in the vector

r =
�
r(�m+ 1) r(�m+ 2) : : : r(m� 1)

�T
: (22)



The Toeplitz structure ofR and the noise subspace parameteriza-
tion matrix,Gm, imply that also the product of these two matrices
is Toeplitz with the (k; l)-element equal to

�k�l = [RGm]k;l =
dX

p=0

gpr(k � l� p): (23)

Thus, the product can be written

RGm =

2
6664

�0 ��1 : : : ��(m�d�1)
�1 �0 : : : ��(m�d)
...

...
�m�1 �d

3
7775 : (24)

Analogous to (22), the elements�l are collected in the vector

� =
�
��(m�d�1) ��(m�d�2) : : : �m�1

�T
: (25)

The reason for collecting the elements in the Toeplitz matrices in
vectors is that it facilitates tracking of single elements. This turns
out to be most useful in the statistical analysis in the sequel. It
follows from (23), (12), and the complex conjugate symmetry of
gk that a short hand formula for� is given by

� = G�2m�1r: (26)

Now, define them� (2m� d� 1) matrices

Qk =
�
0 Im 0m�k

�
; k = 0; 1; : : : ;m� d� 1: (27)

Placed on top of each other,Qk define the new matrix

Q =
�
QT

0 QT
1 : : : QT

m�d�1

�T
: (28)

It is now easily verified that

RGm =
�
Q0� Q1� : : : Qm�d�1�

�
(29)

and, hence,

vec[RGm] = QG�2m�1r: (30)

Equation (30) is used extensively in the statistical analysis of the
estimator. Given a Toeplitz estimate ofR, e.g.,R̂T, we can in an
obvious fashion define sample versions of the above quantities.

5. STATISTICAL PROPERTIES OF THE RESIDUAL

To analyze the performance of the frequency estimators as in (16),
it is necessary to determine the second order moments of the resid-
ual in the cost function. This has been accomplished previously
in [1]. However, the complicated expression for the residual co-
variance matrix in that contribution obstructs the analysis. In this
section, compact matrix expressions are derived for the covariance
matrix of the residual and the rank properties of this matrix are
established. The explicit determination of the rank and the null
space of the residual covariance matrix were left as open questions
in [1].

We obtain the large sample covariance of the residual by re-
lating the statistical properties of the residual vector in (14) to the
properties of the sample covariance matrix via

� = vec[Û�sGm] = vec[ ~�
�1

s U
�
sR̂Gm] +O(1=N)

= vec[ ~�
�1

s U
�
sR̂TGm] +O(1=N) (31)

where we have defined~�s = �s � �I. For a proof of the second
equality in (31) see, e.g., [1]. The third equality follows from the
large sample equivalence of̂R and R̂T. By making use of the
formulavec[ABC] = (CT 
A) vec[B] for any matricesA,B,
andC of compatible dimensions we can rewrite (31) as

� = (Im�d 
 ~�
�1

s U
�
s) vec[R̂TGm] +O(1=N)

= (Im�d 
 ~�
�1

s U
�
s)QG

�
2m�1 r̂+O(1=N); (32)

where the sample counterpart to (30) has been used in the second
step. This relation shows that it is only necessary to study the
statistical properties ofG�2m�1 r̂ in the sequel. Before studying
these statistical properties we introduce the notation

	 , (Im�d 
 ~�
�1

s U
�
s)Q: (33)

With this definition the residual vector is compactly written

� = 	G�2m�1 r̂+O(1=N): (34)

This formula separates the residual in a product with two factors.
The first factor,	, describes the structure in the residual originat-
ing from the Toeplitz structured covariance estimate. The second
factor,G�2m�1 r̂, contains the “statistical kernel” of the residual.

Theorem 1. Let !0 denote the true frequencies and� = �(!0)
the corresponding residuals defined in (14). Then

� = lim
N!1

N Ef���g = �2	G�2m�1G2m�1	
�

�� = lim
N!1

N Ef��T g = �(J
D�)
�r = lim

N!1
N Ef�r�Tr g

= L

�
I

(J
D)

�
�
�
I (J
D�) �L�

, �L��L�:

Here,D = UT
s JUs is a unitary diagonal matrix and the(m �

d)� (m� d) matrixJ is the exchange matrix with ones along the
anti-diagonal and zeros elsewhere.

Proof: See [3].
When using the results in Theorem 1 to determine optimal

weighting matrices for the class of subspace estimators described
in Section 3, the rank and range properties of the residual covari-
ances are important. From Theorem 1 it is clear that� is rank
deficient if and only if	 is not full row rank. This observation is
the reason for writing the residual on the special form in (34). The
following theorem, proved in [3], specifies the rank of	:

Theorem 2. Consider thed(m � d) � (2m � d � 1) matrix	
defined in (33). If the number of sinusoids is equal to one (d = 1),
or if the columns inAm(!) are orthogonal, thenrankf	g =
m�1. Otherwise, when the number of sinusoids is strictly greater
than one, (d > 1), and the columns inAm(!) are not orthogonal,
thenrankf	g = 2m� d� 2.

For the case of only one sinusoid or orthogonal columns inAm(!),
the result of Theorem 2 together with the observation that
G�2m�1G2m�1 is a full rank matrix yield that the dimension of
the null space of� is: dim N (�) = (d � 1)(m � d � 1).
When the sinusoids are more than one and the columns inAm

are not orthogonal we getdim N (�) = (d�2)(m�d�1). The
conditions for when the residual covariance� is positive definite
(dim N (�) = 0) are summarized in Table 1.



d Comment on rank
1 � > 0 holds for all!
2 � > 0 if either the sinusoids are “non-orthogonal”

orm = d+ 1.
> 2 � > 0 only if m = d+ 1.

Table 1: Conditions for when� is positive definite.

6. STATISTICAL ANALYSIS

In general, we assume that the weighting matrixWr may depend
on the parameters as well as on data. However, in the analysis
presented below, we considerWr to be a constant parameter in-
dependent matrix. Since�r = O(1=

p
N), this is valid asymptot-

ically. The statistical analysis is separated in two parts. The first
part solely treats the subspace estimator whereas the second part
establishes the large sample equivalence to AML in [6]. From the
theory presented in, e.g., Appendix C4.4 [5], it follows that the
large sample covariance for the subspace based estimate is

lim
N!1

N Ef(! �!0)(! �!0)
T g

=(�T
rWr�r)

�1
�
T
rWr�rW

T
r �r(�

T
rWr�r)

�1: (35)

Here,�r is the limiting Jacobian of the real-valued residual vector
evaluated at the true frequencies!0,

�r = lim
N!1

@�r
@!

����
!=!0

: (36)

Next, we show how to choose the weighting matrixWr so that
the estimation error covariance in (35) is minimized. It is well
known that if�r is non-singular then an optimal weighting matrix
is given byWr = ��1r . However, here�r is singular and an-
other approach is necessary. It is shown in [3] thatspan f�rg �
span f�rg holds. Here,span(�) denotes the range space of the
corresponding matrix. When this relation holds it follows from
the theory for weighting with pseudo-inverses [4] thatWr = �yr
minimizes the estimation error covariance. Here,(�)y denotes the
Moore-Penrose pseudo inverse; see, e.g., [4].

Theorem 3. Assume that the frequency estimate!̂ is given by (16)
with the weighting matrix given byWr = �yr = L�yL�. Then
!̂ is the asymptotically best consistent estimate within the class of
subspace based estimators and in large samples it converges to a
distribution with the covariance

lim
N!1

N Ef(!̂ � !0)(!̂ � !0)
T g = (�T

r �
y
r�r)

�1

In [3] it is shown that the performance of the optimally weighted
real-valued estimator can also be obtained without separating the
residual in its real and imaginary parts.

The optimal subspace based estimator is now shown to be
equivalent to the asymptotic maximum likelihood frequency esti-
mator (AML) proposed in [6]. The AML algorithm is in principle
a weighted least squares fit of the estimated covariance and the
parameterized version thereof in (22). In [3] it is proved that:

Theorem 4. Assume that the sinusoidal frequencies are such that
not all the columns inAm are orthogonal, then the large sample
covariances of the optimally weighted subspace estimate and the
AML estimate in [6] are equal. This establishes that the subspace

approach provides the minimum asymptotic error covariance in
the class of all estimators based on a given set of covariance esti-
mates.

Observe that the theorem is derived under the assumption that the
sinusoids are non-orthogonal. Surprisingly, the result in the the-
orem is not valid when the sinusoids are orthogonal. Numerical
investigations indicate that the subspace based estimator is in the
orthogonal case equivalent to ESPRIT and thus suboptimal! For
non-orthogonal sinusoids the equivalence of AML and the sub-
space based estimator is perhaps somehow surprising since AML
explicitly exploits the diagonal structure ofS. SinceÛs is com-
puted without the constraint thatS is diagonal (R is Toeplitz),
this is not obviously the case for the subspace method discussed
in this paper. In comparison, neglecting the exploitation of a diag-
onal signal covariance matrix (uncorrelated sources) in direction
estimation results in suboptimal performance [2].

7. CONCLUSIONS

Herein, a Markov-like subspace based procedure for sinusoidal
frequency estimation has been re-investigated. Compact formu-
las for the covariance matrix of the residual in the criterion func-
tion have been derived. These expressions facilitated an analysis
of the estimator and with certain rank considerations optimality
claims were established. In addition, the large sample equivalence
to AML in [6] was established using these expressions.

The rank investigations show that when the number of sinu-
soids is one or two, then the residual covariance matrices are in
most cases full rank and the optimal weighting matrices can be
computed using standard matrix inversion. However, when the
number of sinusoids is strictly greater than two, then these matrices
are always rank deficient. In addition, the dimension of the null-
space of the residual covariance matrix depends on the sinusoidal
frequencies to be estimated. This complicates the computation of
the optimal weighting matrices. Some comments on implementa-
tional aspects can be found in [3].
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