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Theanalytical constant modulus algorithm (ACMA) isadetermin-
istic array processing algorithm to separate sources based on their
constant modulus. It has been derived without detailed regard to
noise processing. In particular, the estimates of the beamformer are
known to be asymptotically biased. In the present paper, weinves-
tigate this bias, and obtain astraightforward weighting scheme that
will whiten the noise and remove the bias. Thisleadsto improved
performance for larger data sets.

1. INTRODUCTION

Constant modulus agorithms (CMAS) enjoy widespread popul ar-
ity as methods for blind source separation and equalization. The
original CMA [1, 2] was devel oped for the purpose of equalization
andisan LM S-typeiteration. Other algorithms are block-iterative.
There are numerous modifications and enhancements, especialy
with regard to initialization and convergence issues.

One aspect that distinguishes source separation from equaliza-
tionisthat it is desired to recover all impinging CM signals. Suc-
cessive cancellation algorithms (in which one signal is retrieved
and removed using LMS) have be defined but are sensitive and
need long convergence times [3], parallel cancellation agorithms
need good initializations or an additiona ‘independence condition’
in order to converge to different signals[4].

An algorithm that solves the instantaneous CM separation
problem elegantly in a non-iterative algebraic way is the recently
derived ‘Analytic CMA’ (ACMA) [5]. The problem isformulated
as an overdetermined system of quadratic equations, whose solu-
tion can be found by solving a linear system followed by a gener-
alized eigenvalue problem. Thisalgorithm is quite robust, even on
very small data sets, and shows good results on measured data[6].
However, its performance has not been analyzed yet.

Thispaper makesastart at such an analysis by investigating the
noise contribution at the first step, the solution of thelinear system.
Since the entries of the corresponding matrix are essentialy cross-
multiplications of the data samples, it is seen that the noise on this
matrix isnot white, leading to abiasin the estimated solution and a
suboptimal asymptotic performance. The main contribution of the
paper isthe derivation of an expression for thisbias. Subsequently,
the algorithm is extended by a noise whitening step which almost
removes the bias. It isdemonstrated that this greatly improves the
performance for large data sets with closely spaced sources.

Notation Vectors are denoted by boldface, matrices by capitals.
Overbar () denotes complex conjugation, T isthe matrix transpose,
Uthe matrix complex conjugate transpose. I isthe mxmidentity
matrix, O and 1 are vectors for which al entries are equal to 0 and
1, respectively. O isthe Kronecker product, o isthe “Khatri-Rao”
product, which is acolumn-wise Kronecker product:

allB alzB L

AOB= | 1B a2B - AoB=[a;Ob; aOby, --].

Two notable properties are: vec(ABC) = (CT U A)vec(B), and
vec(ab™) = b 0 a, where the vec-operator indicates a stacking of
the columns of amatrix into a vector.

Finaly, E denotes the expectation operator, and [ indicates
equality in expectation.

2. DATA MODEL

Consider d independent sources, transmitting signals s(t) with
constant modulus waveforms (|si(t)] = 1) in a wireless scenario.
The signals are received by an array of M antennas. We stack the
antenna outputs X (t) into vectors x(t) and collect N samplesin a
matrix X : M xN. Assuming that the sources are sufficiently nar-
rowband in comparison to the delay spread of the multipath chan-
nel, this leads to the well-known data model

X=AS=ays+ -+ a4%. @)

A=[g - 4] OC M~d s the array response matrix with columns
a.. Therowss of SOC N contain the samples of the source sig-
nals.

In the blind signal separation scenario, both A and S are un-
known, and the objective s, given X, to find the factorization X =
AS Alternatively, wetry to find abeamforming matrix W OC oM
of full row rank d such that S=WX. Note that for source separa-
tion using beamforming to be possible, we need d < M and A full
rank, so that it has aleft inverse W.

Constant-modulus algorithms try to find the factorization X =
AS based on the constant-modulus property of S i.e.,

[Skl = 1.
With additive noise, the data model is

X =AS+E.

3. ORIGINAL ACMA ALGORITHM

We consider first the basic ACMA agorithm for the noisel ess case.
The objectiveisto find all beamforming vectors w that reconstruct
asigna with a constant modulus, i.e.,

wX =s,

It is known that, if sufficiently many samples are taken, s will be
one of the original source signals. Let xi be the k-th column of X.
By substitution, we find

wixxiw=1 -  (gOx)"HwOw)=1 (k=1,---,N).
Thus define
_ P
P:[XOX]D: D Pk = Xk O Xk
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Then (2) isequivaent to finding al w that satisfy
Py=1,

The ACMA technique solves this problem by the following three
steps:
1. Findabasis{y,":-,ys} of al solutions of thelinear system

y=wOw.

Py =a1l, (o gm[o

where a isarbitrary.

2. Find all linear combinations of the basis vectors that have
the required structure

wOw =agy;+ -+ 0gYs, a; OC .

This gives d independent solutionswy, - -+, Wg.
3. Scale each solution w; such that the average output power

1 N 0 N 0
N S WX, = w > XX | wi ©)]
k=1 k=1

isequal to 1. Thisensuresthat o = 1.

The second step is shown to be equivalent to a generalized eigen-
value problem, provided that 6 = d. (For thisit is necessary that X
has full rank, and a preprocessing is needed. See section 5.) The
first step requires the solution of an overdetermined linear system
of equations. This problem can be cast into more practical formu-
lations, as follows.
Let Q be any unitary matrix such that
_[VNpY

i.e, Q zeroes the entries of the first column. Q can e.g., be com-
puted from a QR factorization of [1 P]. Then

VNa

Py=al - Q1 P]{_ﬂzo - {FF’,,%’ 5

The second equation says that {y;} is a basis for the null space of
the matrix P’, and it can be conveniently found from an SVD of
P'. Sincea isfree, thefirst equation is of no importance (as shown
below, itisequd to the condition in step 3).

Define R = PP, Instead of analyzing the influence of noise
on P', it will be more convenient to anayze R.

Lemmal  Rsatisfies
R = PP-ipP11tP
_ N — 0o 1 — = O (4)

= Z(Xk 0 Xk)(Xk 0 Xk) N [ZXk 0 Xk] [ZXk 0 Xk] .

Moreover,
Py=al (a0C) - yRy=0.
0
Q= {gl,]

From Q'1 = 0 and the unitarity of Q, it follows that q; =
Thus

PrROOF Partition Q as

1
it
/ / 1
QQ =QQ-may=1-gu"

With P’ = Q'P it followsthat R= PP’ = P11 - £ 117)P = P'P-
&P P

To provethe second part, notethat ‘ O’ followsimmediately by
substitution into (4). For ‘00", we could make an argument using
R=P'™P', but instead we will give amore general proof using only

(4):

yRy=0
1M 1%y |
- det{ygpgl yDPDPyL_O D
. O 1” —a
- m: | pln R -0
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(on: Py=al.
O

Incidentally, note that p2= \/_lN 1P = ﬁ 3 (% Ox¢)", so that

the first equation pYy = v/Na definesa asa = & 3 (xe Ox)y =
&3 whkixiw. Thus, o isinterpreted as the average output power
of the beamformer, and it isset to 1 in the 3rd step.

4. EFFECT OF NOISE

With the preceding Lemma, we can describe the basis {y;} to be
computed in the first step of ACMA asabasis of the null space of
P, i.e, abasis of the null space of R.

Let us now assume that our observations are noise perturbed:

Rk = Xk + &, k=1,---,N,

and that we compute in the same way as before
R=FP- PP, 5)

where now P = [X o X]". We analyze the contribution of the noise
in this expression. (For readability, we will drop the subscript k in
x and eif it does not lead to confusion.)

We assume zero mean, circularly symmetric noise independent
of the sources, and define

E(ee”) =:0’°Re,  E[(€0e)(e0e)" =: 0°Ce.

For i.i.d. white gaussian noise with variance 02, we have Re = |
and Ce = | 4 vec(l)vec(1)T.

Theorem 2. Define Rasin (5). With the above assumptions on
the noise, .

ROR+0%Rq + 0Cy
where

R = y(XOx)(XOx) 7= & [y x0Ox [sx0x]”
Ry = (3xx)TOR+RID (%xxD)
Ch = NCe—Nvec(Re)vec(Re)-.

PROOF Thefirst term in the definition of R gives

PP — [XoX][KoX]”
= yNXOx+xOe+edx+elde):
(XOx+XOe+eOx+ede)
= ZT[(YDX)(YDX)DH%D e)(xOe)”
+(e0x)(edx)"+(e0e)(ede)”
+(xOx)(e0e)”+ (eDe)(xOx)”

+@ +@ +3 |



where
@ = (xOx)(xOe)P+ (xOx)(edx)?
+(x0e)(X0x)"+ (e0x)(xOx)"
@ = (xOe)(eOx)"+ (eOx)(xOe)"
@ = (xOe)(eDe) + (eOx)(e0e)”
+(e0e)(x0e)P+ (e0e)(e0x)".
The assumptions on the noise imply

E(e)=0, E(ee’)=0, E(ede)=0

sothat @ 00, @ 00, 3@ 0O
_ Usetherelations (a0 b)(cOd)” = ac”0 bd” and vec(ab®) =
b ato obtain

(XOe)(xOe)"=xx"Oee” Oxx" 0o?Re
(e0x)(e0x)”=ee’ OxxP 0 o?RE O xx
(xOx)(ede)" 0 0?(x 0 x)vec(Re)"
(e0e)(xdx)H 0 o?vec(Re) (X0 x)P
(eDe)(eDe) 0 0*Ce.

These areinserted in the expression for PP, Similarly, wefind for
the second term

P = 5 xOx+xOe+eOx+ele
0 5 (XOxX) +0+ 0+ 0?Nvec(Re)

and
P11 O [y xOx] [y X0 x]”
+0N[y X0 x] vec(Re) "+ 0?Nvec(Re) [y X 0 X
+0*N?vec(Re)vec(Re) ™.

Piecing everything together in the expression for R, a number of
terms cancel, and we obtain the claimed result. O

Thus Risin expectation equal to the noise-free R, a second-
order contribution R, due to noise, and afourth-order contribution
which is hopefully insignificant.

For white gaussian noise,

RO XOx)(XOx)I- & [sx0x] [y x0Ox]”
+0? [yxxTO1+10yxx"| + No*.

If weassumethat |02l [r < || 3 *xx5r, i.e, asufficiently large
SNR, then we can ignore the fourth-order term. Note that the rela-
tive size of this approximation isindependent of N: asaresult, the
estimates will have asmall asymptotic bias.

Noise whitening

L et usassumethat we know thenoise covarianceuptoascaar, i.e.,
we know Re. We cannot know Ry, since it depends on noise-free
data, but we can construct

_(Z~~T DRe‘l‘ z~~|]
It is straightforward to show (with X = x + €) that
Rn ORy+02N[RL DRe+ Rl ORy].

If we again assumethat [|0?Re||r < || § 3 xx5g, i.e., asufficiently
large SNR, then the correction by the second term is small, so that
Rn >~ Rn. . .

Thus, we have available the datamatrices R and R,, satisfying
the model (ignoring 4-th order terms)

R~ R+0%Ry.

Since Risrank deficient with akernel of dimension &, we can esti-
mate 02 asthe (average of the) smallest 5 eigenval ues of the matrix
pencil (R, Rn), corresponding to the eigenval ue equation

(R-ARn)y =0.
An estimate of the basis{y;} of thekernel of Risgiven by the cor-

responding eigenvectors.

Alternatively, we can use Rn/ 210 prewhiten the data. Recall
thefactorization R= = PP, whereinfact P isobtained fromaQR
factorization of [1 P].

(R-ARn)y =0
Ry %(RaY/2RR,
- (ISHDPH_M)y —

-1/2 1

MRY?y =0

where

B = PRY?
y' = ﬁ%/ 2)/i .
Thus we compute {y;} asthe d least significant right singular vec-

tors of P'R/2, and then set y; = Rnl/2 !

5. DETAILS

Prewhitening and rank truncation

Suppose we premultiply X with any invertible matrix F. ThenRis
replaced by (F OF)R(F OF) and Ry by (FOF)Ry(F OF)™ Thus
the basis of the null space will be transformed by (F O F)™" but
obviously, this has no effect on the resulting beamformers. Hence,
a prewhitening of the data matrix to reduce Re to | is not essential.

However, apreliminary transformation isuseful for thefollow-
ing reason. Therank of X isd, thusif d < M, then X isrank defi-
cient. X hasto befull rank or elsethenull space of P isinflated with
M2 - d2 additional vectorsy. These satisfy Py = a1l (with a = 0),
so that the null space of P’ and Rwill have dimension & > d. The
additional solutions lead to complicationsin later steps. Thus sup-
pose that U is an M xd matrix whose columns form an orthonor-
mal basis of the column span of A, or an unbiased approximation

thereof. It can e.g., be computed from an SVD of Rel/ 2%, Ingtead
of X, we now work with arank reduced data matrix

X:=UX.
We have X = UY(X + E) so that the noise on X has covariance
Re:=U"RU.
The algorithm then uses R based on X, and Ry based on Re and X.
Notethat itisnot critical that U isan exact basisfor A, aslong
asT= UDA has full rank d: in that case the transformed problem
X = TS-|—ESI|II allowsto separate the sources. However, chosing

col(U) = col(A) will optimally preserve theinformation on thesig-
nals while truncating M —d dimensions of the noise.

White gaussian noise  Assume that U contains the d dominant
singular vectors of X, and let 2 be a diagonal matrix containing
the corresponding singular values. For white gaussian noise, Re is
equal to A

Re =02l
We also have 5 %" = 52 so that

R,=35201+103%2



Given data X and noise covariance Re, compute beam-
former W
1. svD: RY2x —- O
. TReTTTX = EJZV - A )
Rank reduction: X :=U™X, Re:=U"RU
Construct P with rows vech(Xi &) "
O
QRfact: Q1 P]=: [‘/.F E,,}
Ro:=J[$20Re +RY 0 32] 0
SVD: {yl} = ker(PR,>?)
Yi= R;l/zy: (I = 177d)
Y, =vechly; (i=1,---,d)

2. Continue asin the usual ACMA [5]

Figure 1. Weighted ACMA
isdiagonal. For d = 2, suppose & = diag[o1, 5], then

Rn = diag[20%, 0f + 03, 0f + 05, 203].

Thisshowsthat the weighting issignificant only if the singular val-
ues are unequal, i.e., for unequal source powers, or closely spaced
Sources.

Real processing
A hermitian symmetry is present:

y =wOw = vec(ww").

Instead of the ‘vec(:)’ operator which stacks the columns, we can
define a ‘vech(-)’ operator, which essentially takes the real part
of the above-diagona entries, and the imaginary part of below-
diagonal entries. Thisleads to the existence of a data independent
unitary matrix J with a simple structure, such that

vech(ww") = JwOw) OR .

The equation Py = 1 is replaced by (PJ5) EJy) =1, where PJHis
real aswell. Similarly, Risreplaced by JRI-andisrea symmetric,
and if we repeat the derivation of theorem 2, it follows that R, is
replaced by JR,J, and is also real symmetric. Note that if Ry is
diagonal (asitisafter prewhitening), then J has no effect on R, and
can be omitted.

The resulting agorithm is summarized in figure 1.

6. SIMULATIONS

Some performance results are shown in figure 2. In this simula
tion, we took aULA(%) consisting of M = 4 antennas, andd = 3
equal-power constant-modulus sources. Infigure2(a), wevary the
number of samples N and the signal to noiseratio (SNR). The per-
formance measureisthe residual signal to interferenceratio (SIR),
which indicates how well the computed beamforming matrix W is
aninverse of A.

Figure 2(b) shows the SIR for three sources with directions
[-a,0,a], for varying a. The signal to noise ratio (SNR) was set
at 10 dB, and we took N = 200 samples.

The plots show that the whitening removes the saturation of
SIR as present in ACMA for large N, leading to substantial im-
provements for N > 100 and SNR between 0 and 25 dB. For SNR
smaller than 0, the bias removal is ineffective because of our ap-
proximations. As seen in figure 2(b), the whitening is mostly use-
ful if the singular values are sufficiently distinct, i.e., for small
source separations.
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Figure 2. Performance of W-ACMA
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