
WEIGHTED ACMA

Alle-Jan van der Veen

Delft University of Technology, Dept. Electrical Engineering/DIMES, 2628 CD Delft, The Netherlands

The analytical constant modulus algorithm (ACMA) is a determin-
istic array processing algorithm to separate sources based on their
constant modulus. It has been derived without detailed regard to
noise processing. In particular, the estimates of the beamformer are
known to be asymptotically biased. In the present paper, we inves-
tigate this bias, and obtain a straightforward weighting scheme that
will whiten the noise and remove the bias. This leads to improved
performance for larger data sets.

1. INTRODUCTION

Constant modulus algorithms (CMAs) enjoy widespread popular-
ity as methods for blind source separation and equalization. The
original CMA [1,2] was developed for the purpose of equalization
and is an LMS-type iteration. Other algorithms are block-iterative.
There are numerous modifications and enhancements, especially
with regard to initialization and convergence issues.

One aspect that distinguishes source separation from equaliza-
tion is that it is desired to recover all impinging CM signals. Suc-
cessive cancellation algorithms (in which one signal is retrieved
and removed using LMS) have be defined but are sensitive and
need long convergence times [3], parallel cancellation algorithms
need good initializations or an additional ‘independence condition’
in order to converge to different signals [4].

An algorithm that solves the instantaneous CM separation
problem elegantly in a non-iterative algebraic way is the recently
derived ‘Analytic CMA’ (ACMA) [5]. The problem is formulated
as an overdetermined system of quadratic equations, whose solu-
tion can be found by solving a linear system followed by a gener-
alized eigenvalue problem. This algorithm is quite robust, even on
very small data sets, and shows good results on measured data [6].
However, its performance has not been analyzed yet.

This paper makes a start at such an analysis by investigating the
noise contribution at the first step, the solution of the linear system.
Since the entries of the corresponding matrix are essentially cross-
multiplications of the data samples, it is seen that the noise on this
matrix is not white, leading to a bias in the estimated solution and a
suboptimal asymptotic performance. The main contribution of the
paper is the derivation of an expression for this bias. Subsequently,
the algorithm is extended by a noise whitening step which almost
removes the bias. It is demonstrated that this greatly improves the
performance for large data sets with closely spaced sources.

Notation Vectors are denoted by boldface, matrices by capitals.
Overbar (¯) denotes complex conjugation, T is the matrix transpose,
∗ the matrix complex conjugate transpose. Im is the m × m identity
matrix, 0 and 1 are vectors for which all entries are equal to 0 and
1, respectively. ⊗ is the Kronecker product, � is the “Khatri-Rao”
product, which is a column-wise Kronecker product:

A ⊗ B =

2
64

a11B a12B · · ·
a21B a22B · · ·

...
...

. . .

3
75 ; A�B = [a1 ⊗ b1 a2 ⊗ b2 · · ·] :

Two notable properties are: vec(ABC) = (CT ⊗ A)vec(B), and
vec(ab∗) = b̄ ⊗ a, where the vec-operator indicates a stacking of
the columns of a matrix into a vector.

Finally, E denotes the expectation operator, and ∼ indicates
equality in expectation.

2. DATA MODEL

Consider d independent sources, transmitting signals si(t) with
constant modulus waveforms (|si(t)| = 1) in a wireless scenario.
The signals are received by an array of M antennas. We stack the
antenna outputs xi(t) into vectors x(t) and collect N samples in a
matrix X : M × N. Assuming that the sources are sufficiently nar-
rowband in comparison to the delay spread of the multipath chan-
nel, this leads to the well-known data model

X = AS = a1s1 + · · ·+adsd : (1)

A = [a1 · · · ad] ∈ |C M×d is the array response matrix with columns
ai. The rows si of S ∈ |C d×N contain the samples of the source sig-
nals.

In the blind signal separation scenario, both A and S are un-
known, and the objective is, given X, to find the factorization X =

AS. Alternatively, we try to find a beamforming matrix W ∈ |C d×M

of full row rank d such that S = WX. Note that for source separa-
tion using beamforming to be possible, we need d ≤ M and A full
rank, so that it has a left inverse W .

Constant-modulus algorithms try to find the factorization X =
AS based on the constant-modulus property of S, i.e.,

|Sik | = 1 :

With additive noise, the data model is

X̃ = AS+E :

3. ORIGINAL ACMA ALGORITHM

We consider first the basic ACMA algorithm for the noiseless case.
The objective is to find all beamforming vectors w that reconstruct
a signal with a constant modulus, i.e.,

w∗X = s ; |sk | = 1 (k = 1; · · · ;N) : (2)

It is known that, if sufficiently many samples are taken, s will be
one of the original source signals. Let xk be the k-th column of X.
By substitution, we find

w∗xkx∗
kw = 1 ⇔ (x̄k ⊗ xk)

∗(w̄ ⊗ w) = 1 (k = 1; · · · ;N) :

Thus define

P = [X̄ �X]∗ =

2
64

p∗
1
...

p∗
N

3
75 ; pk = x̄k ⊗ xk :

Then (2) is equivalent to finding all w that satisfy

Py = 1 ; y = w̄ ⊗ w :

The ACMA technique solves this problem by the following three
steps:

1. Find a basis {y1; · · · ;yδ} of all solutions of the linear system

Py = α1 ; α ∈ |C

where α is arbitrary.

2. Find all linear combinations of the basis vectors that have
the required structure

w̄ ⊗ w = α1y1 + · · ·+αδyδ ; αi ∈ |C :

This gives d independent solutions w1; · · · ;wd .

3. Scale each solution wi such that the average output power

1
N

N

∑
k=1

w∗
i xkx∗

kwi = w∗
i

N

∑
k=1

xkx∗
k

!
wi (3)

is equal to 1. This ensures that α = 1.

The second step is shown to be equivalent to a generalized eigen-
value problem, provided that δ = d. (For this it is necessary that X
has full rank, and a preprocessing is needed. See section 5.) The
first step requires the solution of an overdetermined linear system
of equations. This problem can be cast into more practical formu-
lations, as follows.

Let Q be any unitary matrix such that

Q[1 P] =:

�p
N p∗

0 P0

�
;

i.e., Q zeroes the entries of the first column. Q can e.g., be com-
puted from a QR factorization of [1 P]. Then

Py = α1 ⇔ Q[1 P]

�
−α
y

�
= 0 ⇔

�
p∗y =

p
Nα

P0y = 0

The second equation says that {yi} is a basis for the null space of
the matrix P0, and it can be conveniently found from an SVD of
P0. Since α is free, the first equation is of no importance (as shown
below, it is equal to the condition in step 3).

Define R = P0∗P0. Instead of analyzing the influence of noise
on P0, it will be more convenient to analyze R.
Lemma 1. R satisfies

R = P∗P − 1
N P∗11∗P

= ∑(x̄k ⊗ xk)(x̄k ⊗ xk)
∗ − 1

N [∑ x̄k ⊗ xk] [∑ x̄k ⊗ xk]
∗
:

(4)

Moreover,

Py = α1 (α ∈ |C) ⇔ y∗Ry = 0 :

PROOF Partition Q as

Q =

�
q∗

1
Q0

�

From Q01 = 0 and the unitarity of Q, it follows that q1 = 1p
N

1.

Thus

Q0∗Q0 = Q∗Q − q1q∗
1 = I −

1
N

11∗

With P0 = Q0P it follows that R = P0∗P0 = P∗(I − 1
N 11∗)P = P∗P−

1
N P∗11∗P.

To prove the second part, note that ‘⇒’ follows immediately by
substitution into (4). For ‘⇐’, we could make an argument using
R = P0∗P0, but instead we will give a more general proof using only
(4):

y∗Ry = 0

⇔ det

�
1∗1 1∗Py

y∗P∗1 y∗P∗Py

�
= 0

⇔ ∃α : [−α∗ 1]

�
1∗1 1∗Py

y∗P∗1 y∗P∗Py

��
−α
1

�
= 0

⇔ ∃α : [−α∗ y∗]

�
1∗

P∗

�
[1 P]

�
−α
y

�
= 0

⇔ ∃α : Py = α1 :

2

Incidentally, note that p∗ = 1p
N

1∗P = 1p
N ∑(x̄k ⊗xk)

∗, so that

the first equation p∗y =
p

Nα defines α as α = 1
N ∑(x̄k ⊗ xk)

∗y =
1
N ∑w∗xkx∗

kw. Thus, α is interpreted as the average output power
of the beamformer, and it is set to 1 in the 3rd step.

4. EFFECT OF NOISE

With the preceding Lemma, we can describe the basis {yi} to be
computed in the first step of ACMA as a basis of the null space of
P0, i.e., a basis of the null space of R.

Let us now assume that our observations are noise perturbed:

x̃k = xk + ek ; k = 1; · · · ;N ;

and that we compute in the same way as before

R̃ = P̃∗P̃ −
1
N

P̃∗11∗P̃ ; (5)

where now P̃ = [¯̃X � X̃]∗. We analyze the contribution of the noise
in this expression. (For readability, we will drop the subscript k in
x and e if it does not lead to confusion.)

We assume zero mean, circularly symmetric noise independent
of the sources, and define

E(ee∗) =: σ2Re ; E[(ē ⊗ e)(ē ⊗ e)∗] =: σ4Ce :

For i.i.d. white gaussian noise with variance σ2, we have Re = I
and Ce = I+vec(I)vec(I)T .
Theorem 2. Define R̃ as in (5). With the above assumptions on
the noise,

R̃ ∼ R+σ2Rn +σ4Cn

where

R = ∑(x̄ ⊗ x)(x̄ ⊗ x)∗ − 1
N [∑ x̄ ⊗ x] [∑ x̄ ⊗ x]∗

Rn = (∑xx∗)T ⊗ Re +RT
e ⊗ (∑xx∗)

Cn = NCe − Nvec(Re)vec(Re)
∗ :

PROOF The first term in the definition of R̃ gives

P̃∗P̃ = [¯̃X � X̃][¯̃X � X̃]∗

= ∑N
1 (x̄ ⊗ x+ x̄ ⊗ e+ ē ⊗ x+ ē ⊗ e)·
·(x̄ ⊗ x+ x̄ ⊗ e+ ē ⊗ x+ ē ⊗ e)∗

= ∑N
1

h
(x̄ ⊗ x)(x̄ ⊗ x)∗ +(x̄ ⊗ e)(x̄ ⊗ e)∗

+(ē ⊗ x)(ē ⊗ x)∗ +(ē ⊗ e)(ē ⊗ e)∗

+(x̄ ⊗ x)(ē ⊗ e)∗ +(ē ⊗ e)(x̄ ⊗ x)∗

+ 1
 + 2
 + 3

i

where
1
 = (x̄ ⊗ x)(x̄ ⊗ e)∗ +(x̄ ⊗ x)(ē ⊗ x)∗

+(x̄ ⊗ e)(x̄ ⊗ x)∗ +(ē ⊗ x)(x̄ ⊗ x)∗

2
 = (x̄ ⊗ e)(ē ⊗ x)∗ +(ē ⊗ x)(x̄ ⊗ e)∗

3
 = (x̄ ⊗ e)(ē ⊗ e)∗ +(ē ⊗ x)(ē ⊗ e)∗

+(ē ⊗ e)(x̄ ⊗ e)∗ +(ē ⊗ e)(ē ⊗ x)∗ :

The assumptions on the noise imply

E(e) = 0 ; E(eeT) = 0 ; E(ee∗e) = 0

so that 1
 ∼ 0, 2
 ∼ 0, 3
 ∼ 0.
Use the relations (a⊗b)(c⊗d)∗ = ac∗ ⊗bd∗ and vec(ab∗) =

b̄ ⊗ a to obtain

(x̄ ⊗ e)(x̄ ⊗ e)∗ = x̄xT ⊗ ee∗ ∼ x̄xT ⊗ σ2Re

(ē ⊗ x)(ē ⊗ x)∗ = ēeT ⊗ xx∗ ∼ σ2RT
e ⊗ xx∗

(x̄ ⊗ x)(ē ⊗ e)∗ ∼ σ2(x̄ ⊗ x)vec(Re)
∗

(ē ⊗ e)(x̄ ⊗ x)∗ ∼ σ2vec(Re)(x̄ ⊗ x)∗

(ē ⊗ e)(ē ⊗ e)∗ ∼ σ4Ce :

These are inserted in the expression for P̃∗P̃. Similarly, we find for
the second term

P̃∗1 = ∑ [x̄ ⊗ x+ x̄ ⊗ e+ ē ⊗ x+ ē ⊗ e]
∼ ∑(x̄ ⊗ x)+0+0+σ2 Nvec(Re)

and

P̃∗11∗P̃ ∼ [∑ x̄ ⊗ x] [∑ x̄ ⊗ x]∗

+σ2N [∑ x̄ ⊗ x]vec(Re)
∗ +σ2Nvec(Re) [∑ x̄ ⊗ x]∗

+σ4N2vec(Re)vec(Re)
∗ :

Piecing everything together in the expression for R̃, a number of
terms cancel, and we obtain the claimed result. 2

Thus R̃ is in expectation equal to the noise-free R, a second-
order contribution Rn due to noise, and a fourth-order contribution
which is hopefully insignificant.

For white gaussian noise,

R̃ ∼ ∑(x̄ ⊗ x)(x̄ ⊗ x)∗ − 1
N [∑ x̄ ⊗ x] [∑ x̄ ⊗ x]∗

+ σ2
�
∑ x̄xT ⊗ I+ I ⊗ ∑xx∗� + Nσ4I :

If we assume that kσ2IMkF �k 1
N ∑xx∗kF , i.e., a sufficiently large

SNR, then we can ignore the fourth-order term. Note that the rela-
tive size of this approximation is independent of N: as a result, the
estimates will have a small asymptotic bias.

Noise whitening

Let us assume that we know the noise covariance up to a scalar, i.e.,
we know Re. We cannot know Rn since it depends on noise-free
data, but we can construct

R̃n := (∑ ¯̃xx̃T)⊗ Re +RT
e ⊗ (∑ x̃x̃∗) :

It is straightforward to show (with x̃ = x+ e) that

R̃n ∼ Rn +σ2N[RT
e ⊗ Re +RT

e ⊗ Re] :

If we again assume that kσ2RekF �k 1
N ∑xx∗kF , i.e., a sufficiently

large SNR, then the correction by the second term is small, so that
R̃n ' Rn.

Thus, we have available the data matrices R̃ and R̃n, satisfying
the model (ignoring 4-th order terms)

R̃' R+σ2R̃n :

Since R is rank deficient with a kernel of dimension δ, we can esti-
mate σ2 as the (average of the) smallest δ eigenvalues of the matrix
pencil (R̃; R̃n), corresponding to the eigenvalue equation

(R̃ − λR̃n)y = 0 :

An estimate of the basis {yi} of the kernel of R is given by the cor-
responding eigenvectors.

Alternatively, we can use R̃1=2
n to prewhiten the data. Recall

the factorization R̃ = P̃0∗P̃0, where in fact P̃0 is obtained from a QR
factorization of [1 P̃].

(R̃ − λR̃n)y = 0

⇔ R̃1=2
n (R̃−1=2

n R̃R̃−1=2
n − λI)R̃1=2

n y = 0
⇔ (P̃00∗P̃00 − λI)y0 = 0 ;

where
P̃00 := P̃0R̃−1=2

n

y0 := R̃1=2
n yi :

Thus we compute {y0i} as the δ least significant right singular vec-

tors of P̃0R̃−1=2
n , and then set yi = R̃−1=2

n y0i.

5. DETAILS

Prewhitening and rank truncation

Suppose we premultiply X̃ with any invertible matrix F. Then R is
replaced by (F̄ ⊗F)R(F̄ ⊗F)∗ and Rn by (F̄ ⊗F)Rn(F̄ ⊗F)∗. Thus
the basis of the null space will be transformed by (F̄ ⊗ F)−∗ but
obviously, this has no effect on the resulting beamformers. Hence,
a prewhitening of the data matrix to reduce Re to I is not essential.

However, a preliminary transformation is useful for the follow-
ing reason. The rank of X is d, thus if d < M, then X is rank defi-
cient. X has to be full rank or else the null space of P is inflated with
M2 − d2 additional vectors y. These satisfy Py = α1 (with α = 0),
so that the null space of P0 and R will have dimension δ > d. The
additional solutions lead to complications in later steps. Thus sup-
pose that Û is an M × d matrix whose columns form an orthonor-
mal basis of the column span of A, or an unbiased approximation

thereof. It can e.g., be computed from an SVD of R−1=2
e X̃. Instead

of X̃, we now work with a rank reduced data matrix

X̂ := Û∗X̃ :

We have X̂ = Û∗(X +E) so that the noise on X̂ has covariance

R̂e := Û∗ReÛ :

The algorithm then uses R̂ based on X̂, and R̂n based on R̂e and X̂.
Note that it is not critical that Û is an exact basis for A, as long

as T = Û∗A has full rank d: in that case the transformed problem
X̂ = TS+ Ê still allows to separate the sources. However, chosing
col(Û)= col(A) will optimally preserve the information on the sig-
nals while truncating M − d dimensions of the noise.

White gaussian noise Assume that Û contains the d dominant
singular vectors of X̃, and let Σ̂ be a diagonal matrix containing
the corresponding singular values. For white gaussian noise, R̂e is
equal to

R̂e = σ2I :

We also have ∑ x̂x̂∗ = Σ̂2 so that

R̂n = Σ̂2 ⊗ I+ I ⊗ Σ̂2

Given data X̃ and noise covariance Re, compute beam-
former W

1. SVD: R−1=2
e X̃ =: UΣV∗

Rank reduction: X̂ := Û∗X̃; R̂e := Û∗ReÛ
Construct P with rows vech(x̂kx̂∗

k)
T

QR fact.: Q[1 P] =:

�p
N p∗

0 P0

�
R̂n := J

�
Σ̂2 ⊗ R̂e + R̂T

e ⊗ Σ̂2
�

J∗

SVD: {y0i} = ker(P0R̂−1=2
n)

yi = R̂−1=2
n y0i (i = 1; · · · ;d)

Yi = vech−1yi (i = 1; · · · ;d)

2. Continue as in the usual ACMA [5]

Figure 1. Weighted ACMA

is diagonal. For d = 2, suppose Σ̂ = diag[σ1;σ2], then

R̂n = diag[2σ2
1; σ2

1 +σ2
2; σ2

1 +σ2
2; 2σ2

2] :

This shows that the weighting is significant only if the singular val-
ues are unequal, i.e., for unequal source powers, or closely spaced
sources.

Real processing

A hermitian symmetry is present:

y = w̄ ⊗ w = vec(ww∗) :

Instead of the ‘vec(·)’ operator which stacks the columns, we can
define a ‘vech(·)’ operator, which essentially takes the real part
of the above-diagonal entries, and the imaginary part of below-
diagonal entries. This leads to the existence of a data independent
unitary matrix J with a simple structure, such that

vech(ww∗) = J(w̄ ⊗ w) ∈ ||R :

The equation Py = 1 is replaced by (PJ∗)(Jy) = 1, where PJ∗ is
real as well. Similarly, R̂ is replaced by JR̂J∗ and is real symmetric,
and if we repeat the derivation of theorem 2, it follows that R̂n is
replaced by JR̂nJ∗, and is also real symmetric. Note that if R̂n is
diagonal (as it is after prewhitening), then J has no effect on R̂n and
can be omitted.

The resulting algorithm is summarized in figure 1.

6. SIMULATIONS

Some performance results are shown in figure 2. In this simula-
tion, we took a ULA(λ

2) consisting of M = 4 antennas, and d = 3
equal-power constant-modulus sources. In figure 2(a), we vary the
number of samples N and the signal to noise ratio (SNR). The per-
formance measure is the residual signal to interference ratio (SIR),
which indicates how well the computed beamforming matrix W is
an inverse of A.

Figure 2(b) shows the SIR for three sources with directions
[−α;0;α], for varying α. The signal to noise ratio (SNR) was set
at 10 dB, and we took N = 200 samples.

The plots show that the whitening removes the saturation of
SIR as present in ACMA for large N, leading to substantial im-
provements for N > 100 and SNR between 0 and 25 dB. For SNR
smaller than 0, the bias removal is ineffective because of our ap-
proximations. As seen in figure 2(b), the whitening is mostly use-
ful if the singular values are sufficiently distinct, i.e., for small
source separations.

W−ACMA
ACMA

M=4
d=3

alpha = −10 0 20

10
1

10
2

10
3

0

10

20

30

40

50

60

N

S
IR

 [d
B

]

SIR after beamforming

-5dB

20dB

0dB

10dB

SNR=30dB

5dB

W−ACMA
ACMA

SNR=10 dB
M=4
d=3
N=200

5 10 15 20 25 30
0

5

10

15

20

25

30

35

angle separation [deg]

S
IR

 [d
B

]

SIR after beamforming

Figure 2. Performance of W-ACMA

References

[1] J.R. Treichler and B.G. Agee, “A new approach to multipath
correction of constant modulus signals,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 31, pp. 459–471, Apr. 1983.

[2] J.R. Treichler and M.G. Larimore, “New processing tech-
niques based on constant modulus adaptive algorithm,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 33, pp. 420–
431, Apr. 1985.

[3] J.J. Shynk and R.P. Gooch, “The constant modulus array for
cochannel signal copy and direction finding,” IEEE Trans. Sig-
nal Proc., vol. 44, pp. 652–660, Mar. 1996.

[4] C.B. Papadias and A.J. Paulraj, “A constant modulus al-
gorithm for multiuser signal separation in presence of de-
lay spread using antenna arrays,” IEEE Signal Proc. Letters,
vol. 4, pp. 178–181, June 1997.

[5] A.J. van der Veen and A. Paulraj, “An analytical constant
modulus algorithm,” IEEE Trans. Signal Processing, vol. 44,
pp. 1136–1155, May 1996.

[6] A.L. Swindlehurst, M.J. Goris, and B. Ottersten, “Some ex-
periments with array data collected in actual urban and subur-
ban environments,” in IEEE workshop on Signal Proc. Adv. in
Wireless Comm., (Paris), pp. 301–304, Apr. 1997.

