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ABSTRACT

We propose in this paper an optimal nonlinear Bayesian
algorithm for joint detection and tracking of targets
that move randomly in cluttered environments. We
review the derivation of the optimal Bayesian detec-
tor/tracker and present Monte Carlo simulations that
benchmark the detection and tracking performances in
both spatially correlated and non-Gaussian clutter.

1. INTRODUCTION

The problem we consider in this paper is to detect and
track moving targets using noisy sensor measurements.
The traditional approach to this problem involves the
separation of the detection and tracking tasks [1]. In
this paper, we present an alternative approach that in-
tegrates the detection problem into the same frame-
work in which the tracking problem is solved.

We apply nonlinear stochastic �ltering to design the
optimal joint tracker/detector. We restrict our discus-
sion to rigid bodies with translational motion such that
the problem of tracking a target reduces to the track-
ing of its centroid position. We use a Bayesian strategy
to compute recursively the posterior probabilities of all
possible centroid positions at the nth sensor scan con-
ditioned on the present and all past observations. An
additional state representing the absence of the target
is used to build an integrated framework for detection
and tracking.

Section 2 reviews briey the models for target sig-
nature, target motion, and clutter statistics [2] that un-
derly our integrated framework for detection and track-
ing. Three classes of clutter models are assumed: white
Gaussian clutter, spatially correlated Gauss-Markov clut-
ter [3], and white non-Gaussian clutter [4] with heavy-
tail envelope statistics (K and Weibull clutter). In sec-
tion 3, we derive the optimal nonlinear detector/tracker.
Section 4 presents receiver operating characteristic (ROC)
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curves that quantify the detection performance of the
algorithm for the di�erent clutter models. Section 5
examines tracking performance and quanti�es the per-
formance gain of the nonlinear Bayesian tracker over
other schemes commonly found in the literature such
as maximum likelihood (ML) trackers and linearized
Kalman-Bucy �lters (KBfs). Finally, section 6 con-
cludes the paper.

2. THE MODEL

We review briey in this section the models for target
signature, target motion, and clutter statistics. For
simplicity, we restrict ourselves to a scenario with one-
dimensional (1D) surveillance spaces (e.g., radial mo-
tion with constant azimuth and elevation) and a single
target per sensor scan. The extension of the models to
two-dimensional (2D) environments (targets that move
randomly in a plane) and to a multitarget scenario is
detailed in [2].

Sensor Model
The sensor scans a bounded surveillance region which,

given the sensor's �nite resolution, is discretized by a
uniform �nite discrete lattice. Assuming a 1D surveil-
lance region, the sensor lattice is an interval of the real
line given by L = fl: 1 � l � Lg where L is the number
of resolution cells.

We introduce now the random variable zn that rep-
resents the target centroid position (range) in the sen-
sor lattice during the nth sensor scan. In order to
account for the situations when targets move in and
out of the sensor range and in order to account for
the possibility of absence of target, we de�ne zn on
an augmented lattice [2]. The augmented lattice in-
cludes possible centroid positions that actually lie out-
side the sensor range but, for which, due to the phys-
ical dimensions of the target, at least one pixel of the
target may be still present in the sensor image. The
augmented lattice also includes an additional arti�cial
state that mathematically represents the absence of a
target. In the 1D case, the augmented lattice is then



~L = fl: � ls + 1 � l � L+ li + 1g, where (li + ls + 1)
is the maximum length of the 1D noise free image of
a possible target and zn = L + li + 1 means that no
target is present at instant n.

Motion Model
The motion dynamics of a target in the correspond-

ing augmented lattice ~L is speci�ed by a transition

probability matrix, T, whose general element T (k, r)
is

T (k, r) = Prob(zn = k � ls j zn�1 = r � ls) (1)

where 1 � k, r � L+ li + ls + 1.
Observations
The observations at the nth sensor scan, assuming

a 1D surveillance region and a single target per frame,
are collected in the L-dimensional column vector

yn = f(zn) + vn (2)

where vn is the background clutter and f(zn) is an
appropriate nonlinear target model.

We assume the following models for the statistics
of the clutter: (1) white Gaussian noise; (2) spatially
correlated noncausal Gauss-Markov random sequence
(GMrseq); (3) uncorrelated non-Gaussian complex clut-
ter with K-envelope statistics; (4) uncorrelated non-
Gaussian complex clutter with Weibull envelope statis-
tics. Details on these models and on the simulation of
the corresponding clutter samples are found in [2, 3, 4].
The target model, on the other hand, maps a centroid
position zn, for all states di�erent from the absent
state, into a noise-free image. The noise-free target
image is characterized by a set of signature parame-
ters which, in general, are factored into a determinis-
tic shape component and a possibly unknown/random
pixel intensity component. When zn = L+ li + 1, i.e.,
when there is no target present during the nth sensor
scan, the target model maps zn into a null image. The
complete target model is detailed in [2].

3. OPTIMAL DETECTOR/TRACKER

We assume for simplicity that at each sensor scan only
one single target may be present at the surveillance
space. The extension of the detection/tracking algo-
rithm to a multitarget scenario is found in [2]. Given
the observations yn

0
= [y0 y1 : : :yn], from instant 0 up

to instant n, we want, at each instant n, to determine
whether a target is present or not (detection) and, if
the target is declared present, to estimate its position
(range) in the surveillance space (tracking).

Optimal Bayesian Detector/Tracker
The optimal statistical solution for the joint de-

tection/tracking problem follows a Bayesian strategy.

From a Bayesian point of view, it su�ces to compute at
each instant n, the posterior probabilities P (zn j yn

0
),

for all possible values of the random variable zn, includ-
ing the absent state. The formal solution is divided into
two steps:

Filtering Step: From Bayes' law,

P (zn j y
n
0
) = Cnp(yn j zn)P (zn j y

n�1

0
) (3)

where Cn is a normalization constant.
Prediction Step: From the total probability theo-

rem

P (zn j y
n�1

0
) =
X

zn�1

P (zn j zn�1)P (zn�1 j y
n�1

0
) .

(4)
We now detail the minimum probability of error detec-
tor and the optimal MAP tracker.

Detector: Let H0 denote the hypothesis that no tar-
get is present at instant n and H1 denote the hypothe-
sis that a target is present during the nth sensor scan.
Given P (zn j yn

0
), compute the posterior probabilities

of the detection hypothesis Hj , j = 0, 1. The minimum
probability of error Bayes detector follows the decision
rule

P (H0 j y
n
0
)
H0

>
<
H1

P (H1 j y
n
0
) . (5)

Tracker: If hypothesis H1 is declared true, compute
the conditional probability vector �i

njn such that

�i
njn(zn) = P (zn j H1,y

n
0
) =

P (zn,H1 j y
n
0
)

P (H1 j yn0 )
. (6)

The MAP Bayes tracker looks for the maximum of�i
njn

to estimate the position of target.

4. DETECTION PERFORMANCE

We examine in this section the detection performance
of the optimal nonlinear detector/tracker. If we vary
the threshold in (5) over a wide range, the detection al-
gorithm operates as a Neyman-Pearson detector where
a �xed value of probability of false alarm is associated
with each value of the threshold. The performance of
the detector is assessed then by a ROC curve where the
di�erent combinations of probabilities of false alarm
(Pfa) and probability of detection (Pd) are plotted for
a given level of peak signal-to-noise ratio (PSNR).

The experimental ROC curves presented in this sec-
tion are obtained through Monte Carlo simulations.
For simplicity, the simulations use a succession of single
targets with time-invariant, deterministic, unit signa-
ture. The targets move in a sensor resolution grid of



L = 64 cells with a mean drift of 2 cells/scan. There is
a uctuation probability of one cell around the mean
displacement equal to 0:4. As one target disappears
from the surveillance space, there is a 20 % probability
of a new target reappearing at any arbitrary position in
the grid L = fl:1 � l � Lg. For each threshold value,
we use 10,000 sensor scans to compute the correspond-
ing false alarm and detection statistics.

Gaussian Clutter: We present initially the detec-
tion statistics under Gaussian clutter. Figure 1 shows
the probability of detection versus probability of false
alarm for spatially uncorrelated (white) Gaussian clut-
ter with levels of PSNR equal to 10, 6, and 3 dB from
top to bottom. Figure 1(b) plots the detection statis-
tics for spatially correlated clutter modeled by a �rst-
order noncausal GMrseq with correlation parameter
�1 = 0:24. In �gure 1(b), the levels of PSNR from top
to bottom are 8, 6, and 3 dB respectively. We notice
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Figure 1: ROC curves for Gaussian clutter: (a) white,
(b) correlated GMRseq, �1 =0.24

from �gures 1(a) and (b) that, as the PSNR increases
the ROC curves tend to a \step-like" shape, i.e., for
low levels of false alarm, we observe correspondingly
much higher levels of detection. The performance de-
teriorates as expected as we increase the power of the
background noise. However, even in adverse scenar-
ios such as the situation when PSNR = 3 dB, the ROC
curves still remain signi�cantly above the 45o line. This
behavior highlights good detection performance even in
very noisy environments.

In order to evaluate the e�ect of the degree of clut-
ter spatial correlation on the detection performance, we
show in �gure 2 the superposition of the ROC curves
obtained with white Gaussian (spatially uncorrelated)
clutter, correlated clutter with �1 = 0:24 (low spa-
tial correlation), and correlated clutter with �1 = 0:49
(high spatial correlation). The peak signal-to-noise ra-
tios from top to bottom are 6 and 3 dB respectively.
Figure 2 indicates that, for these two levels of PSNR,
there is little perceptible di�erence, within the margin

of error in the experiment, between the detection per-
formances under uncorrelated, weakly correlated, and
strongly correlated clutter. That suggests a possible ro-
bustness of the optimal detector with respect to clutter
correlation.
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Figure 2: Comparison of detection performances
for white Gaussian clutter (solid), weakly corre-
lated GMrseq clutter (dotted), and highly corre-
lated GMRseq clutter (dashdotted); top to bottom:
PSNR=6 dB and PSNR= 3 dB

Non-Gaussian Clutter: To evaluate the detection per-
formance for non-Gaussian clutter, we ran Monte Carlo
simulations with a succession of single pointwise tar-
gets moving in uncorrelated complex clutter with K
and Weibull envelope statistics. The motion parame-
ters are the same as in the Gaussian simulation, except
that, in the case of complex clutter, a drift of d res-
olutions cells/scan corresponds to a drift of 2d in the
double-sized sensor image. The probabilities of detec-
tion and false alarm for each value of threshold are ob-
tained from statistics collected from 10000 sensor scans,
where each scan corresponds to 64 resolution cells or
128 complex quadrature returns. We generate 8,064
samples of background clutter every 63 scans.

Figure 3(a) and (b) show the experimental ROC
curves for K andWeibull clutter respectively, with PSNR
equal to 6 and 3 dB from top to bottom. We note that
even in these situations of low PSNR per scan and ad-
verse heavy-tail clutter, the ROC curve still remain sig-
ni�cantly above the 45o degree line.

5. TRACKING PERFORMANCE

In this section, we compare the performance of the op-
timal nonlinear MAP tracking algorithm introduced
in section 3 with the performance of other subopti-
mal trackers found in the literature: the memoryless
maximum likelihood (ML) tracker and the linearized
Kalman-Bucy tracker [2].

Figure 4(a) illustrates the tracking results for the
three schemes in correlated Gauss-Markov clutter with
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Figure 3: ROC curves for non-Gaussian clutter: (a)
K envelope, (b) Weibull envelope; top to bottom,
PSNR=6 and 3 dB

correlation parameter 0:24. The simulated trajectory
corresponds to a unit signature pointwise target that
moves in a 300 resolution cells sensor grid with a mean
drift of 2 cells/frame and a uctuation probability of
one cell around the mean displacement equal to 20 %.
The PSNR per scan is 10 dB. The solid line is the
real trajectory. The dashed line corresponds to the ML
track and the dashdotted line shows the output of the
linearized Kalman-Bucy tracker. The tracking results
for the optimal nonlinear tracker proposed in this paper
are indicated by the symbol `+'. Figure 4(a) illustrates
the poor performance of the ML tracker in low PSNR
environments. When the output of the ML tracker is
corrected by the linearized Kalman-Bucy �lter (KBf),
the tracking performance improves due to the inertia
in the prediction step of the KBf. The trajectory esti-
mated by the optimal nonlinear tracker overlap, on the
other hand, the true trajectory evidentiating superior
performance over the linearized KBf.
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Figure 4: (a) Tracking examples with correlated clutter
for ML tracker (dotted), Kalman-Bucy tracker (dash-
dotted), and nonlinear tracker (+), PSNR=10 dB; (b)
Performance gain of the nonlinear tracker over the KBf
tracker for correlated clutter

In order to quantify the gain in tracking perfor-
mance provided by the optimal nonlinear tracker, we
ran Monte Carlo simulations to estimate the variance
of the tracking error for each of the three tracking
schemes. The variance was computed by an average
over 6500 sensor scans with 300 resolution cells per
scan. The initial tracking error is set to zero for the 3
trackers. The measurement noise variance in the lin-
earized KBf is adaptively adjusted to follow the esti-
mated error variance of the ML tracker for each value
of PSNR per scan. Figure 4(b) shows the gain G =
20 log�kbf =�nl when the standard deviation of the back-
ground noise is varied from � = 0:3 (PSNR=10 dB) to
� = 0:95 (PSNR= 0.5 dB). We observe that the per-
formance gain over the linearized KBf ranges from 30
dB for PSNR=10 dB to 7 dB for PSNR close to 0 dB.

6. CONCLUSIONS

We derived in this paper an optimal nonlinear joint
detector/tracker for targets that move randomly on a
�nite discrete grid. We presented Monte Carlo simu-
lations that quantify the detection and tracking per-
formances in scenarios with spatially correlated Gaus-
sian clutter and uncorrelated non-Gaussian clutter with
heavy-tail envelope statistics (K and Weibull clutter).
These results benchmark the performance gains to be
had by any suboptimal detection/tracking algorithm.
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